Диод шоттки

Диод Шоттки

Главная > Теория > Диод Шоттки

Электротехника и радиоэлектроника пестрят многими понятиями, одним из которых является диод Шоттки, используемый в многочисленных схемах электроцепей. Многие задаются вопросами о том, что такое диод Шоттки, как он обозначается на схемах, а также каков принцип работы диода Шоттки.

Внешний вид Диода Шоттки с маркировкой 1N5817

Общая информация и принцип работы

Диод Шоттки – диодное полупроводниковое изделие, которое при прямолинейном включении в цепь выдает малый показатель уменьшения напряжения. Состоит данный элемент из металла и полупроводника. Назван диод в честь известного немецкого физика-испытателя В. Шоттки, какой в 38 году 20 века изобрел его.

В промышленности применяется такой диод с ограниченным обратным напряжением – до 250 В, но на практике в бытовых целях для предотвращения движения тока в противоположную сторону применяются в основном низковольтные варианты – 3-10В.

Диоды Шоттки можно разделить на 3 класса по мощностным характеристикам:

  • высокомощные;
  • среднемощные;
  • маломощные.

Диод с барьером Шоттки (более точное наименование изделия) состоит из проводника, для контакта с каким используется металл, кольца защиты и пассивации стеклом.

Структура диода с барьером Шоттки 1N5817

В тот момент, когда по электроцепи проходит ток, в разных участках корпуса по всей области полупроводникового барьера и на защитном кольце собираются отрицательные и положительные заряды, что приводит к возникновению электрополя и выделению тепловой энергии – это большой плюс диода для многих физических опытов.

Диодные сборки этого типа могут выпускаться в нескольких вариациях:

  • диоды Шоттки с общим анодом;
  • диодные изделия, имеющие вывод с общего катода;
  • диоды, собранные по схеме удвоения.

Технические характеристики популярных модификаций диодов Шоттки

НаименованиеПредельное обратное пиковое напряжениеПредельный выпрямительный электротокПиковый прямой электротокПредельный обратный электротокПредельное прямое напряжение
Ед. измерения В А оС А µА В
1N5817 20 1 90 25 1 0,45
1N5818 30 1 90 25 1 0,55
1N5819 40 1 90 25 1 0,6
1N5821 30 3 95 80 2 0,5
1N5822 40 3 95 80 2 0.525

Габаритные размеры диодных сборок типа Шоттки серии 1N5817

Различия от иных полупроводников

Диоды Шоттки различаются от иных диодных изделий тем, что имеют преграду в виде перехода – полупроводник-металл, характеризующийся односторонней электропроводностью. Металлом в них могут выступать кремний, арсенид галлия, реже могут использоваться соединения германия, вольфрама, золота, платины и прочие.

Работа этого электронного компонента будет полностью зависеть от выбранного металла.

Чаще всего в таких конструкциях встречается кремний, так как отличается большей надежностью и отличными рабочими характеристиками на высоких мощностях.

Обратите внимание

Могут также использоваться соединения галлия и мышьяка, германия. Производственная технология этого электронного изделия проста, что обуславливает его низкую стоимость.

Изделие Шоттки характеризуется более стабильным функционированием при подаче электротока, чем прочие типы полупроводниковых диодов. Достигается это за счет того, что в его корпус внедряются специальные кристаллические образования.

Достоинства и недостатки

Вышеописанные диоды имеют некоторые достоинства, которые заключаются в следующем:

  • электроток отлично удерживается в цепи;
  • небольшая емкость барьера Шоттки увеличивает срок службы изделия;
  • низкое падение электронапряжения;
  • быстродействие в электроцепи.

Самым же существенным недостатком компонента является огромный обратный ток, что даже при скачке этого показателя в несколько единиц приводит к выходу диода из строя.

Обратите внимание! При эксплуатации электроэлемента Шоттки в цепях с мощным электротоком при неблагоприятных условиях теплового обмена случается теплопробой.

Диод Шоттки: обозначение и маркировка

Диод Шоттки на электросхемах обозначается практически точно так же, как и обычные полупроводники, но с некоторыми особенностями.

Условные графические обозначения основных полупроводников и диодов, в том числе диода с барьером Шоттки

Стоит отметить, что на схемах могут встречаться и сдвоенные варианты диода Шоттки. Представляет собой такая конструкция два соединенных диода в общем корпусе, имеющие спаянные катоды или аноды, что ведет к образованию трех выводов.

Внешний вид и обозначение сдвоенного диода Шоттки с общим катодом

Маркировка таких элементов проставляется сбоку в виде букв и символов. Каждый производитель осуществляет маркирование своих изделий по-своему, но выполняя определенные международные стандарты.

Важно! Если буквенно-цифирное обозначение на корпусе диода не понятно, то рекомендуется смотреть расшифровку в радиотехническом справочнике.

Область применение

Применение диодных конструкций с барьером Шоттки можно встретить во многих приборах и электротехнических структур. Наиболее часто они применяются на электросхемах в следующей технике:

  • электроприборы для дома и компьютеры;
  • блоки питания различного типа и стабилизаторы напряжения;
  • теле,- и радиоаппаратура;
  • транзисторы и батареи, работающие от солнечной энергии;
  • прочая электроника.

Столь широкая область применения связана с тем, что такой электротехнический элемент увеличивает многократно эффективность и работоспособность конечного изделия, восстанавливает обратное сопротивление электротока, сохраняет его в электросети, снижает численность утерь динамики электронапряжения, а также вбирает в себя довольно много различного типа излучений.

Диагностирование диодов Шоттки

Проверить исправность электроэлемента Шоттки несложно, однако для этого потребуется некоторое время. Для диагностики неисправностей необходимо проделать нижеследующее:

  1. Из электросхемы или диодного моста требуется изначально выпаять интересующий элемент;
  2. Провести визуальный осмотр на возможные механические повреждения, наличие следов химических и прочих реакций;
  3. Проверить диод тестером или мультиметром;
  4. Если проверка проводится мультиметром, то необходимо после его включения подвести щупы к концам катода и анода, в итоге прибор выдаст реальное напряжение диодной сборки.

Важно! При проведении проверочных мероприятий мультиметром, следует учитывать электроток, который обычно указан сбоку изделия.

Схема проверки диодной сборки Шоттки посредством мультиметра

Итогом этих простых действий станет установление технического состояния полупроводника. Неисправным же диод может стать по следующим причинам:

  1. При возникновении пробоин элемент Шоттки перестает удерживать электроток, соответственно из полупроводника превращается в проводника;
  2. Когда в диодном мосту или самом диодном элементе случается обрыв, то пропуск электротока прекращается вообще.

Стоит отметить, что при таких происшествиях не будет видно ни дыма, ни запаха гари, соответственно, проверять потребуется все диоды, а лучше всего обратиться в специализированные мастерские.

Диод Шоттки – простой и неприхотливый, но в то же время крайне необходимый элемент в современной электронике, так как именно благодаря ему удается обеспечить бесперебойную работу многих приборов и технических изделий.

Видео

Источник: https://elquanta.ru/teoriya/diod-shottki.html

Диод шоттки: принцип работы, зачем он нужен

Диод Шоттки, принцип работы которого мы опишем сегодня, является очень удачным изобретением немецкого ученого Вальтера Шоттки. В его честь устройство и было названо, а встретить его можно при изучении самых разных электрических схем. Для тех, кто еще только начинает знакомиться с электроникой, будет полезным узнать о том, зачем его используют и где он чаще всего применяется.

Что это такое

Это полупроводниковый диод с минимальным падением уровня напряжения во время прямого включения. Он имеет две главные составляющие: собственно, полупроводник и металл.

Как известно, допустимый уровень обратного напряжения в любых промышленных электронный устройствах составляет 250 В.

Такое U находит практическое применение в любой низковольтной цепи, препятствуя обратному течению тока.

Структура самого устройства несложна и выглядит следующим образом:

  • полупроводник;
  • стеклянная пассивация;
  • металл;
  • защитное кольцо.

При прохождении электрического тока по цепи положительные и отрицательные заряды скапливаются по всему периметру устройства, включая защитное кольцо. Скопление частиц происходит в различных элементах диода. Это обеспечивает возникновение электрического поля с последующим выделением определенного количества тепла.

Отличие от других полупроводников

Главное его отличие от других полупроводников состоит в том, что преградой служит металлический элемент с односторонней проводимостью.

Такие элементы изготавливают из целого ряда ценных металлов:

  • арсенида галлия;
  • кремния;
  • золота;
  • вольфрама;
  • карбида кремния;
  • палладия;
  • платины.

От того, какой металл выбирается в качестве материала, зависят характеристики нужного показателя напряжения и качество работы электронного устройства в целом. Чаще всего применяют кремний — по причине его надежности, прочности и способности работать в условиях большой мощности. Также используется и арсенид галлия, соединенный с мышьяком, либо германий.

Плюсы и минусы

При работе с устройствами, включающими в себя диод Шоттки, следует учитывать их положительные и отрицательные стороны. Если подключить его в качестве элемента электрической цепи, он будет прекрасно удерживать ток, не допуская его больших потерь.

К тому же, металлический барьер обладает минимальной емкостью. Это значительно увеличивает износостойкость и срок службы самого диода. Падение напряжения при его использовании минимально, а действие происходит очень быстро — стоит только провести подключение.

Однако большой процент обратного тока является очевидным недостатком. Поскольку многие электроприборы обладают высокой чувствительностью, нередки случаи, когда небольшое превышение показателя, всего лишь на пару А, способно надолго вывести прибор из строя. Также, при небрежной проверке напряжения полупроводника, может произойти утечка самого диода.

Сфера применения

Диод Шоттки может включать в себя любой аккумулятор.

Он входит в устройство солнечной батареи. Солнечные панели, которые уже давно успешно работают в условиях космического пространства, собираются именно на основании барьерных переходов Шоттки. Такие гелиосистемы устанавливаются на космических аппаратах (спутниках и телескопах, проводящих работу в жестких условиях безвоздушного пространства).

Устройство незаменимо при работе компьютеров, бытовой техники, радиоприемников, блоков электропитания. При правильном использовании диод Шоттки увеличивает производительность любого устройства, предотвращает потери тока. Он способен принимать на себя альфа-, бета- и гамма-излучение. Именно поэтому он незаменим в условиях космоса.

С помощью такого устройства можно осуществить параллельное соединение диодов, используя их в качестве сдвоенных выпрямителей. Таким образом можно объединить межлу собой два параллельных источника питания.

Один корпус включает в себя два полупроводника, а концы положительного и отрицательного зарядов связываются друг с другом. Есть и более простые схемы, где диоды Шоттки очень малы.

Это характерно для очень мелких деталей в электронике.

Диод Шоттки является незаменимым элементом во многих электронных устройствах. Главное — понимать специфику его работы и использовать его корректно.

Источник: https://batteryk.com/diod-shottki-printsip-raboty

Диод Шоттки: принцип его работы, положительные и отрицательные качества

Большинство современных радиосхем использует диод Шоттки. Его действие основано на физическом эффекте, который открыл немецкий ученый Вальтер Шоттки, поэтому он и носит его имя. Этот элемент имеет много таких же параметров, как и обычные диоды, но есть у него и существенные отличия.

Если обычный полупроводниковый диод основан на свойствах p-n перехода, то принцип работы диода Шоттки основан на свойствах перехода при контакте металла и полупроводника. Такой контакт получил в физике получил название «барьер Шоттки». В качестве полупроводника чаще всего используется арсенид галлия (GaAs), а из металлов применяют в основном следующие:

  • вольфрам;
  • платину;
  • серебро;
  • золото;
  • палладий.

На радиотехнических схемах обозначение диода Шоттки похоже на обозначение обычного полупроводникового элемента, но есть заметное различие: со стороны катода, где есть небольшая перпендикулярная к основной линии черта, у нее дополнительно загибаются края в разные стороны под прямым углом или с плавным изгибом.

Читайте также:  Ниша под телевизор из гипсокартона

Иногда на принципиальных схемах затруднительно графически обозначить этот элемент, его рисуют, как обычный диод, а в спецификации дополнительно указывают тип.

Положительные и отрицательные качества

Полупроводниковый элемент Шоттки широко применяется в различных электронных и радиотехнических устройствах из-за своих положительных свойств. К ним относят следующие:

  • очень низкое падение напряжения на переходе, максимальное значение которого составляет всего 0,55 В;
  • большая скорость срабатывания;
  • малая емкость барьера (перехода), что дает возможность применять диод Шоттки в схемах с высокой частотой тока.

Но есть и несколько отрицательных свойств, которые необходимо учитывать при использовании этого радиотехнического элемента. А именно:

  • мгновенный необратимый выход из строя даже при кратковременном повышении обратного напряжения выше предельного значения;
  • возникновение теплового пробоя на обратном токе из-за выделения тепла;
  • часто встречаются утечки диодов, которые определить затруднительно.

Сфера применения и популярные модели

Полупроводниковый радиотехнический элемент Шоттки характеризуется отсутствием диффузной емкости из-за отсутствия неосновных носителей. Поэтому этот элемент в первую очередь — это СВЧ-диод широкого спектра применения. Его используют в роли следующих элементов:

  • тензодатчик;
  • приемник излучения;
  • модулятор света;
  • детектор ядерного излучения;
  • выпрямитель тока высокой частоты.

Малое падение напряжения, к сожалению, наблюдается у большинства этих элементов при рабочем напряжении в пределах 55−60 В.

Если напряжение выше этого значения, то диод Шоттки имеет такие же качества, как и обычный полупроводниковый элемент на кремниевой основе.

Максимум обратного напряжения обычно составляет порядка 250 В, но есть особые модели, которые выдерживают и 1200 В (например, VS-10ETS12-M3).

Из сдвоенных моделей популярной среди радиолюбителей является 60CPQ150. Этот радиоэлемент имеет максимум обратного напряжения 150 В, а каждый отдельный диод из сборки рассчитан на пропускание тока в прямом включении силой 30 А. В мощных импульсных источниках питания иногда можно встретить модель VS-400CNQ045, у которой сила тока на выходе после выпрямления достигает 400 А.

Важно

У радиолюбителей пользуются популярностью диоды Шоттки серии 1N581x. Такие образцы, как 1N5817, 1N5818, 1N5819 имеют максимальный номинальный прямой ток 1 А, а обратное напряжение у них составляет 20−40 В. Падение напряжения на барьере (переходе) в диапазоне от 0.45 до 0.55 В. Также в радиолюбительской практике встречается элемент 1N5822 с прямым током до 3 А.

На печатных платах используют миниатюрные диоды серий SK12 — SK16. Несмотря на очень небольшие размеры, они выдерживают прямой ток до 1 А, а напряжение «обратки» составляет от 20 до 60 В. Есть и более мощные диоды, например, SK36. У него прямой ток доходит до 3 А.

Диагностика возможных неисправностей

Существует всего три вида возможных неисправностей. Это пробой, обрыв и утечка. Если первые два вида можно диагностировать самостоятельно в домашних условиях с помощью обычного мультиметра, то третья неисправность в домашних условиях практически не поддается диагностике.

Для надежного определения выхода из строя диода его необходимо выпаять из схемы, иначе шунтирование через другие элементы схемы будет искажать полученные показания. При пробое элемент ведет себя как обычный проводник.

При замере его сопротивления в обоих направлениях измерительный прибор будет составлять «0». При обрыве деталь вообще не пропускает электрический ток в любом направлении.

Его сопротивление равно бесконечности в каждом направлении.

Косвенным признаком утечки в элементе является его нестабильная работа. Иногда может срабатывать встроенная защита в блоке питания компьютера, монитора и т. д.

Мультиметром определить утечку невозможно, так как она возникает при работе элемента, а замеры необходимо производить при его отключении от схемы.

Источник: https://220v.guru/elementy-elektriki/diody/chto-takoe-diod-shottki-i-princip-ego-raboty.html

Диод Шоттки

Диод полупроводниковый, применяющий в принципе своей работы барьерный эффект, носит имя немецкого учёного, его описавшего, – Вальтера Шоттки.

Важно! Барьерный эффект – серьёзное влияние общего объемного заряда на развитие разряда в промежутке с резко неравномерным полем.

Дополнительная информация. Что такое диод – электронный элемент, обладающий неодинаковой возможностью проводить электрический ток, в зависимости от его направления.

Диод Шоттки: принцип работы

От классического вида вентиль Шоттки отличается тем, что основу его работы составляет пара полупроводник-металл. Зачастую эта пара упоминается как барьер Шоттки. Этот барьер, кроме схожей с p-n переходом способности проводить электричество в одну сторону, обладает несколькими полезными особенностями.

https://www.youtube.com/watch?v=M5Yg0L4GHGY

Арсенид галлия и кремний – основные поставщики материала для производства электронного элемента в промышленных условиях. В более редких случаях используют драгоценные химические элементы: платина, палладий и им подобные.

Его графическое условное выражение на электрических схемах не совпадает с классическими диодами. Маркировка электронных элементов похожа. Также встречаются двойные диоды в виде сборки.

Важно! Двойной диод – это пара диодов, совмещенных в общем объеме.

Сдвоенный диод с барьером Шоттки

У сдвоенных вентилей выходы катодов или анодов совмещены. Отсюда следует, что такое изделие обладает тремя концами. Сборки с общим катодом, например, работают там, где требуются импульсные блоки питания. Диоды Шоттки с общим анодом используются существенно реже.

Диоды находятся в едином корпусе и используют для их изготовления одну технологию производства, поэтому по набору своих параметров они как близнецы-братья. Температура работы у них тоже одинаковая, т.к. находятся в общем пространстве. Данное свойство значительно уменьшает необходимость их замены из-за потери работоспособности.

Самые важные отличительные свойства рассматриваемых вентилей – это незначительное прямое падение напряжения (до 0,4 В) в момент перехода и высокое время срабатывания.

Совет

Однако упомянутая величина падения напряжения обладает узким диапазоном прикладываемого напряжения – не более 60 В. И сама эта величина мала, что задаёт достаточно узкий спектр применения данных диодов.

Если напряжение превысит указанную величину, барьерный эффект исчезает, и диод начинает работать в режиме обычного выпрямительного диода.

Обратное напряжение для большинства из них не выходит за рамки 250 В, однако существуют образцы с величиной обратного напряжения 1,2 кВ.

При проектировании электрических схем проектировщики частенько на принципиальных схемах диод Шоттки не выделяют графически, однако в спецификации к заказу указывают на его использование, прописывая в типе. Поэтому при заказе оборудования на это нужно обращать пристальное внимание.

Из неудобств в работе с вентилями с барьером Шоттки необходимо отметить их чрезвычайную «нежность» и нетерпимость к малейшему, даже очень короткому по времени превышению номинала обратного напряжения.

В этом случае они просто выходят из строя и больше не восстанавливаются, что, в сравнении с кремниевыми диодами, не идёт им на пользу, т.к. последние обладают свойством самовосстановления, после чего могут продолжать работать в обычном режиме, не требуя замены.

Также нельзя забывать, что обратный ток в них критически зависит от градуса перехода. При появлении значительного значения обратного тока, пробоя не избежать.

Повышенная рабочая частота вследствие незначительной емкости переходных процессов и короткого периода восстановления по причине серьёзного быстродействия – те положительные свойства, позволяющие использовать данные диоды, например, радиолюбителям. Также применяют их на частотах, достигающих нескольких сотен кГц, например, в импульсных выпрямителях.

Обратите внимание

Большое количество произведённых диодов уходит для использования в микроэлектронике. Современный уровень развития науки и промышленности дозволяет использовать в процессе изготовления вентилей с барьером Шоттки нано технологии. Созданные таким образом вентили применяют для шунтирования транзисторов.

Данное решение серьёзно увеличивает срабатывание последних.

Диоды Шоттки в источниках питания

В компьютерных блоках питания очень часто расположены вентили Шоттки. Пятивольтовое напряжение обеспечивает серьёзный ток в десятки ампер, что для низковольтных систем питания является рекордом.

Для этих блоков питания и применяют вентили Шоттки. В основном, используются сдвоенные диоды с единым катодом. Ни один качественный современный питающий блок компьютеров не обходится без такой сборки.

Диагноз. «Перегоревший» питающий блок электронного устройства чаще всего означает необходимость замены сгоревшей сборки Шоттки. Причины неисправности всего две: увеличенный ток утечки и электрический пробой. При наступлении описанных состояний электрическое питание на компьютер перестаёт подаваться. Защитные механизмы сработали. Рассмотрим, как это происходит.

Принципиальная схема импульсного блока питания

Напряжение на входе компьютера отсутствует на постоянной основе. Блок питания полностью заблокирован вшитой в компьютер защитой.

Бывает «непонятная» ситуация: вентилятор охлаждения то начинает работать, то опять характерный шум пропадает. Это означает, что напряжение на входе компьютера (выходе питающего блока) то появляется, то исчезает. Т.е.

защита отрабатывает периодические ошибки, но блокировать полностью источник не спешит. Появился неприятный запах, идущий от горячего блока? Диодный блок точно требует замены.

Ещё один способ домашней диагностики: при большой нагрузке центрального процессора питающий блок отключился сам по себе. Это признак утечки.

После ремонта блока питания, связанного с заменой сдвоенных диодов Шоттки, необходимо «прозвонить» и транзисторы. При обратной процедуре диоды также требуют проверки. Особенно это правило актуально, если причиной ремонта стала утечка.

Проверка диодов Шоттки

Как сделать диммер для паяльника

Бытовой мультиметр хорошо справляется с задачей проверки любого вида диодов с барьером Шоттки. Способ проверки очень схож с проверкой рядового диода. Однако есть свои секреты.

Электронный элемент с утечкой особенно тяжело поддаётся корректной проверке. Во-первых, диодную сборку необходимо извлечь из схемы. Для этого потребуется паяльник.

Если диод пробит, то сопротивление, близкое к нулю, во всех возможных режимах работы подскажет о его неработоспособности. По физическим процессам это напоминает замыкание.

«Утечка» диагностируется сложнее. Самый распространённый мультиметр для населения – dt-830, в большинстве случаев измерений в положении «диод» не увидит проблему. При переведении регулятора в положение «омметр» омическое сопротивление уйдёт в бесконечность. Также прибор не должен показывать наличие Омического сопротивления. В противном случае требуется замена.

Тестирование диодов Шоттки

Диоды Шоттки распространены в электрике и радиоэлектронике. Область их использования широкая, вплоть до приёмников альфа излучения и различных космических аппаратов.

Видео

Изменение температуры паяльника с помощью диммера

Источник: https://amperof.ru/elektropribory/diod-shottki.html

Что такое диод Шоттки- подробное описание полупроводника

В электроустановках, как вы знаете, имеет огромное применение силовые полупроводниковые приборы — промышленные диоды. Это  стабилитроны, диоды Зенера и гость нашей статьи — диод Шоттки.

Что такое диод Шоттки(наречен в честь немецкого физика Вальтера Шоттки), могу сказать кратко – он отличается от других диодов принципом работы основанный на выпрямляющем контакте металл – полупроводник.

Этот эффект может получиться в двух случаях: для диода n-типа –если в полупроводнике работа выхода меньше чем металла, для диода р-типа – если работа выхода полупроводника больше чем металла.

Важно

Наибольшей популярностью пользуются диоды Шоттки вида n-типа из-за высокой подвижностью электронов, сравнимо с подвижностью дырок.

Читайте также:  Инфракрасные обогреватели вредны для здоровья?

Рис 1. Вид диода Шоттки в разрезе

Плюсы и минусы

Для сравнения берем биполярный диод. Как говорится: сразу в огонь, начнем с недостатка, а он считаю самый важный. У диодов Шоттки огромный обратный ток.

С минусами все, теперь хорошее, плюсы.

  • Во-первых, считаю, что диоды Шоттки являются наиболее быстродействующими. Так же можно учитывать плюсом прямое падение напряжения при таком же токе на несколько десятых вольта меньше как у биполярных.
  • Во-вторых, можно добавить, что у  данных диодов  не накапливается не основные носители заряда, так как ток в полупроводнике проходит по принципу дрейфа. Про этот механизм расскажу в следующих статьях.

Структура диода Шоттки

Огромное количество диодов Шоттки изготавливаются по планарной технологии с  эпитаксиальным n-слоем, на поверхности которого создают оксидный слой, в котором образуются окна для формирования барьера.

В роли последнего используются такие металлы: молибден, титан, платина, никель.

По всей площади контактной области формируется кольцо кремния р-типа( рис 2 а), которое будет служить уменьшением краевых токов утечки.

Рис 2 а.,б.

Работает «охранное» кольцо таким способом: степень легирования и размеры р-области проектируется таким образом, чтобы при перенапряжениях на приборе ток пробоя протекал именно через р-n-преход, а не через контакт Шоттки.

Здесь мы видим, что области р-типа сформированы непосредственно в активной области перехода Шоттки.

Поскольку в такой конструкции имеется два типа перехода – переход металл-кремний и р-n-переход,- по своим свойствам и характеристикам она занимает  промежуточное положение.

Благодаря переходу Шоттки, она имеет минимальные токи утечки, а из наличия р-n-перехода — большие напряжения при прямом смещении.

Также конструкция, приведенная на рисунке 2 б, обладает повышенной устойчивостью к действию разряда статического электричества.

Это следует из принципа работы, который заключается в том, что объемные токи утечки замыкаются на обедненной области р-n-перехода, тем самым уменьшая электрическое поле на границе раздела металл-полупроводник при прямом смещении, области пространственного р-n-переходов имеют минимальную ширину, и вольт-амперная характеристика (ВАХ) рис.3  диода близка к ВАХ типовой конструкции диода. При обратных же напряжениях область обеднения р-n-перехода увеличивается по мере увеличения прикладываемого напряжения и ОПЗ соседних р-n-переходов смыкается, образуя своего рода «экран», защищающий контакт Me-Si высоких напряжений, которые могут вызвать большие объемные токи утечки.

Рис.3 Вольт-амперная характеристика диода Шоттки

Принцип действия

Вольт-амперная характеристика диода Шоттки, смещенного в прямом направлении, определяется формулой

которая по форме совпадает с ВАХ р-n-перехода, однако ток  J0  гораздо выше, чем Js (типовые значения диода Шоттки Al-Si при 25 С J0 = 1.6 *10-5А/см2, а для р-n-перехода при Nd=Na=1016А/см3, Js=10-10А/см2)

При прямом смещении диода Шоттки к прямому падению напряжения на переходе добавляется напряжение на самом полупроводнике. Сопротивление этой области содержит две составляющие:  сопротивление слаболегированной эпитаксиальной пленки (n—) и сопротивление сильнолегированной подложки (n+).

Совет

Для диода Шоттки с низким допустимым напряжением (менее 40 В) эти два сопротивления оказываются одного порядка, поскольку n+ область значительно длиннее (n—) области (примерно 500 и 5 мкм, соответственно).

Общее сопротивление кремния площадью 1 см2 составляет в таком случае   от 0,5 до 1 мОм, создавая падение напряжения в полупроводнике от 50 до 100 мВ при токе 100А.

Если диод Шоттки выполняется на допустимое обратное напряжение более 40 В, сопротивление слаболегированной области возрастает очень быстро, поскольку для создания более высокого напряжения требуется более протяженная слаболегированная область и еще более низкая концентрация носителей. В результате оба фактора приводят к возрастанию сопротивления (n—) области диода.

Конструкторско-технологические приемы

Большое сопротивление является одной из причин того, что обычные кремниевые диоды Шоттки не выполняются на напряжение свыше 200 В.

Для снижения обратных токов утечки, повышение устойчивости к разрядам статического электричества используются различные приемы.

Так, для снижения токов утечки и выхода годных диодов Шоттки в окне под барьерный слой делают углубление 0,05 мкм, а после формировании углубления в эпитаксиальном слое  проводят отжиг при температуре 650 град. В среде азота в течении 2-6 часов.

Снижение обратных токов молибденовых диодов Шоттки добиваются путем создания геттерирующего слоя перед нанесением   эпитаксиального слоя полированием обратной стороны подложки свободным абразивом, а после металлизации электрода Шоттки удаляют геттерирующий слой.

При выдерживании оптимальных соотношений между шириной и глубиной охранного кольца также можно существенно обратные токи утечки и повысить устойчивость к статики.

Пишите комментарии,дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Источник: https://elektronchic.ru/elektronika/chto-takoe-diod-shottki.html

Диод Шоттки: принцип работы

Многие неисправности в системных блоках питания возникают из-за неполадок вторичных цепей, работающих совместно с источниками питания.

Если ранее очень часто выходили из строя силовые транзисторные ключи, то в настоящее время основной проблемой становятся поломки вторичных выпрямителей, основой которых являются диод Шоттки.

В нем используется принцип перехода от металла к полупроводнику. Как правило, большая часть таких диодов используется в цепях с низким напряжением.

Положительные качества диода Шоттки

Если в обычных диодах значение прямого падения напряжения составляет примерно от 0,6 до 0,7 вольта, то применение диодов Шоттки позволяет снизить этот показатель от 0,2 до 0,4 вольта.

При этом, максимальное обратное напряжение может составлять до нескольких десятков вольт.

Этот показатель дает ограничение в применении диодов Шоттки и предполагает их использование только в низковольтных цепях.

Обратите внимание

При небольшой электрической емкости перехода, становится возможным произвести значительное увеличение рабочей частоты. Благодаря этому свойству, диод нашел довольно широкое применение для интегральных микросхем. В силовых электрических приборах переходы с малой емкостью имеют короткий восстановительный период, что позволяет выпрямителям работать на высоких частотах.

Улучшенные характеристики по сравнению с обычными выпрямителями позволяют эффективно использовать их для импульсных блоков питания и цифровой аппаратуры.

Недостатки

В том случае, когда максимальное обратное напряжение на короткое время превышает допустимый уровень, диод Шоттки полностью выходит из строя. Это необратимый процесс, после которого становится невозможным восстановление первоначальных свойств.

Кроме того наблюдаются повышенные обратные токи, которые возрастают при росте температуры самого кристалла. В случае некачественного тепло-отведения, действие положительной тепловой обратной связи может привести к аварийному перегреванию диода. 

В блоках питания диод Шоттки эффективно применяются при выпрямлении токов в каналах.

С учетом высокого значения выходного тока, возникает необходимость в быстром действии выпрямителей, для того, чтобы уменьшить их энергетические потери.

Этот фактор приводит к значительному увеличению коэффициента полезного действия источников питания. Кроме того, обеспечивается надежная работа силовых транзисторов, установленных в первой части блоков питания.

Таким образом, диоды Шоттки применяются в тех случаях, когда необходимо уменьшить коммутационные динамические потери, а также при устранении коротких замыканий во время переключения. Это устройство является эффективным выпрямительным элементом.

Источник: https://electric-220.ru/news/diod_shottki_princip_raboty/2014-01-23-504

Как проверить диод Шоттки мультиметром?

Диоды Шоттки благодаря своему быстродействию зачастую используются в импульсных стабилизаторах, а также в выпрямителях блоках питания ПК. Проверка на исправность диода Шоттки ничем особо не отличается от проверки самого обычного диода, она проводиться по единому принципу.

Единственным моментом будет, который нужно учесть, что диоды Шоттки, используемые в хороших и качественных блоках питания зачастую встречаются сдвоенными в общий корпус и имеют общий катод.

И так, сегодня мы расскажем вам, как проверить диод Шоттки мультиметром и выявить все его дефекты?

Как проверить диод Шоттки мультиметром?

Для наглядности мы, проведем небольшую проверку диода Шоттки SBL3045PT. Этот диод от блока питания ПК, рассчитан производителем до 45 В, 30 А. (т.е. по 15 А на каждый диод).


При использовании сдвоенных подобных диодов в выпрямителях необходимо учитывать этот момент, что производитель часто указывает ток на сборку целиком, а не на каждый диод в сборке.

Схематическая проверка сдвоенного диода Шоттки с общим катодом изображена ниже. Мы видим, что поочередно необходимо проверить каждый из двух диодов.

Наглядно продемонстрируем как проверить диод Шоттки мультиметром?

Важно! При проверке диода можно и важно найти дефекты не только обрыв или пробой. Необходимо пытаться учитывать такой неприятный дефект, как небольшая «утечка».

Если мы производили проверку мультиметром с режимом «диод», и выявили вполне рабочий элемент, но у нас есть подозрение подобную на утечку, тогда необходимо попробовать измерять обратное сопротивление диода, предварительно включив на мультиметре режим омметра.

Важно

На диапазоне «20 кОм» мультиметр должен показывать обратное сопротивление диода как бесконечно большое.

Но если тестер показывает даже небольшое сопротивление, например, около 2—3 кОм, тогда к такому диоду необходимо относиться с большим подозрением и лучше сразу заменить новым.

Одним из самых больших недостатков у диодов Шоттки является то, что они моментально выходят из строя при превышении допустимого напряжения. Учитывая все моменты при самостоятельном ремонте импульсных блоков питания, в случае обнаружения дефектных диодов и после их замены, сразу же необходимо проверять на исправность все силовые транзисторы.

Источник: http://diodnik.com/kak-proverit-diod-shottki/

Диод Шоттки — принцип работы, назначение :

Диод Шоттки — это полупроводниковый прибор (диод) реализованный за счет контакта металл-полупроводник. Свое имя получил в честь немецкого физика Вальтера Шоттки.

Особенности диодов Шоттки

В 1938 г. ученым была создана основа теории этих полупроводниковых приборов. Вместо p-n перехода в таких диодах в качестве барьера применен металл-полупроводник. Область полупроводникового материала объединена основными носителями. В месте контакта начинает формироваться область заряда ионизованных акцепторов.

В результате в районе перехода возникает потенциальный барьер, который получил название барьера Шоттки. Изменение его уровня приводит к изменению значения тока, протекающему сквозь диод Шоттки.

Главной особенностью таких полупроводниковых приборов считается низкий уровень понижения прямого напряжения после p-n перехода, а также отсутствие уровня заряда обратного восстановления.

Диоды Шоттки работают в диапазоне температур от минус 650 до плюс 1600 по Цельсию, значение допустимого обратного напряжения выпускаемых в промышленности диодов ограничено 250 В.

Однако широкое применение эти приборы получили в промышленной электронике в низковольтных цепях, обратное напряжение которых ограничено пределом до десятков вольт. Диод Шоттки позволяет получать необходимое значение потенциального барьера путем подбора нужного металла.

Достаточно низкий уровень высокочастотного шума позволяет использовать такие диоды в импульсных блоках питания, в цифровой аппаратуре, в качестве приемников излучения, модуляторов света, в трансформаторных блоках аналоговой аппаратуры. Они нашли широкое применение при конструировании солнечных батарей.

Совет

Принцип барьера Шоттки используют при проектировании и изготовлении быстродействующих СВЧ-диодов. Диод Шоттки конструктивно исполнен в стеклянном, пластмассовом и металлическом корпусах. Также эти приборы выпускаются в SMD-корпусах.

Читайте также:  Конструкция и принцип сборки мясорубки своими руками

Достоинства и недостатки

Их достоинством, в отличие от кремниевых диодов, является довольно низкое падение напряжения (до 0,2-0,4 вольт). Такое малое значение падения характерно исключительно для диодов Шоттки. Барьер Шоттки тоже имеет меньшее значение электрической емкости перехода, это позволяет заметно повышать рабочую частоту прибора.

Также эти устройства характеризуются пониженным значением уровня помех. Диод Шоттки имеет и ряд недостатков. Главным является высокая чувствительность к кратковременным скачкам обратного тока и напряжения, в результате чего происходит короткое замыкание, а диод перегорает.

Также диоды такого типа характеризуются увеличением значения обратного тока при повышении температуры кристалла.

По мощности эти полупроводниковые приборы можно разбить на три группы: маломощные (проходной ток их не превышает 3-5 ампер), средней мощности (до 10 ампер) и мощные (ток достигает 60 ампер).

Мощные диоды Шоттки используются для работы в приборах, служащих для выпрямления переменного тока. Они обеспечивают прохождение прямого тока, достигающего десятков ампер. При этом падение напряжения на диоде составляет всего 0,5-1 В.

Допустимое же значение обратного напряжения в диодах Шоттки —  200-500 В.

Источник: https://www.syl.ru/article/116137/diod-shottki—printsip-rabotyi-naznachenie

Диод Шоттки Обозначение, применение и параметры диодов Шоттки

 К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект можно добавить ещё один. Это диод Шоттки. Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания p-n перехода.

 Также как и другие именитые собратья, диод Шоттки нашёл применение в современной электронике. Стабилитрон (диод Зеннера) применяется повсеместно в устройствах электропитания и стабилизации в огромных количествах. Его не менее известный собрат (диод Ганна) способный генерировать гигагерцовые частоты используется как миниатюрный аналог клистрона или магнетрона.

Он расположен в фокусе всех параболических антенн и играет роль первого гетеродина и преобразователя частоты в системах спутникового телевидения, радиотелескопов и системах приёма телеметрической информации космических систем.

Обратите внимание

Но вернёмся к диоду Шоттки. На принципиальных схемах диод Шоттки изображается вот так.

Как видим, изображение диода Шоттки несколько отличается от обозначения обычного полупроводникового диода.

Кроме такого обозначения на схемах можно встретить и изображение сдвоенного диода Шоттки.

Сдвоенный диод – это два диода смонтированных в одном общем корпусе. Выводы катодов или анодов этих диодов объединены. Поэтому сдвоенный диод, как правило, имеет три вывода. В импульсных блоках питания обычно применяются сдвоенные диоды Шоттки с общим катодом.

Так как два диода размещены в одном корпусе и выполнены в едином технологическом процессе, то их параметры очень близки. Поскольку диоды размещены в едином корпусе, то при работе они находятся в одном температурном режиме. Это увеличивает надёжность работы элемента.

У диодов Шоттки есть два положительных качества: весьма малое прямое падение напряжения (0,2-0,4 вольта) и очень высокое быстродействие.

К сожалению, такое малое падение напряжения проявляется при приложенном напряжении не более 50-60 вольт. При дальнейшем повышении напряжения диод Шоттки ведёт себя как обычный кремниевый выпрямительный диод. Максимальное обратное напряжение для этих диодов обычно не превышает 250 вольт.

Так, сдвоенный диод Шоттки (Schottky rectifier) 60CPQ150 рассчитан на максимальное обратное напряжение 150V, а каждый из диодов сборки способен пропустить в прямом включении 30 ампер!

Важно

Очень часто в принципиальных схемах сложное графическое изображение катода попросту опускают и изображают диод Шоттки как обычный диод. А тип применяемого диода указывают в спецификации.

К недостаткам этих диодов Шоттки можно отнести то, что даже при кратковременном превышении обратного напряжения они мгновенно выходят из строя и главное необратимо.

В то время как кремниевые силовые вентили после прекращения действия превышенного напряжения прекрасно самовосстанавливаются и продолжают работать.

Кроме того обратный ток диодов очень сильно зависит от температуры перехода и на большом обратном токе возникает тепловой пробой.

К положительным качествам диодов Шоттки кроме высокого быстродействия, а, следовательно, малого времени восстановления можно отнести малую ёмкость перехода (барьера), что позволяет повысить рабочую частоту.

Это позволяет использовать диоды Шоттки в импульсных выпрямителях на частотах в сотни килогерц. Очень много диодов Шоттки находят своё применение в интегральной микроэлектронике.

Выполненные по нано технологии диоды Шоттки входят в состав интегральных схем, где они шунтируют переходы транзисторов для повышения быстродействия.

В радиолюбительской практике прижились диоды Шоттки серии 1N581x. Это диоды 1N5817, 1N5818, 1N5819.

Совет

Все они рассчитаны на максимальный прямой ток (IF(AV)) – 1 ампер и обратное напряжение (VRRM) от 20 до 40 вольт.

Падение напряжения (VF) на переходе составляет от 0,45 до 0,55 вольт. Как уже говорилось, прямое падение напряжения (Forward voltage drop) у диодов Шоттки очень мало.

Также достаточно известным диодом Шоттки является 1N5822. Он рассчитан на прямой ток в 3 ампера и выполнен в корпусе DO-201AD.

Также на печатных платах можно встретить диоды Шоттки серии SK12 – SK16 для поверхностного монтажа. Диоды для SMD монтажа имеют довольно небольшие размеры.

Несмотря на это диоды SK12-SK16 выдерживают прямой ток до 1 ампера при обратном напряжении 20 – 60 вольт. Прямое падение напряжения составляет 0,55 вольт (для SK12, SK13, SK14) и 0,7 вольт (для SK15, SK16).

Также на практике можно встретить диоды серии SK32 – SK310, например, SK36, который рассчитан на прямой ток 3 ампера.

Применение диодов Шоттки в источниках питания

Диоды Шоттки активно применяются в блоках питания компьютеров и импульсных стабилизаторов напряжения. Среди низковольтных питающих напряжений самыми сильноточными (десятки ампер) являются напряжения + 3,3 вольта и + 5,0 вольт.

Именно в этих вторичных источниках питания и используются диоды Шоттки. Чаще используются сдвоенные диоды с общим катодом. Именно применение сдвоенных диодов может считаться признаком высококачественного и технологичного блока питания.

Выход из строя диодов Шоттки одна из наиболее часто встречающихся неисправностей в импульсных блоках питания. У диода может быть два «дохлых» состояния: чистый электрический пробой и утечка. При наличии одного из этих состояний блок питания компьютера блокируется, так как срабатывает защита. Но это может происходить по-разному.

В первом случае все вторичные напряжения отсутствуют. Защита заблокировала блок питания. Во втором случае вентилятор «подёргивается» и на выходе источников питания периодически то появляются пульсации напряжения, то пропадают.

То есть схема защиты периодически срабатывает, но полной блокировки источника питания при этом не происходит. Диоды Шоттки гарантированно вышли из строя, если радиатор, на котором они установлены, разогрет очень сильно до появления неприятного запаха.

Обратите внимание

И последний вариант диагностики связанный с утечкой диодов: при увеличении нагрузки на центральный процессор в мультипрограммном режиме блок питания самопроизвольно отключается.

Следует иметь в виду, что при профессиональном ремонте блока питания после замены вторичных диодов, особенно с подозрением на утечку, следует проверить все силовые транзисторы выполняющие функцию ключей и наоборот: после замены ключевых транзисторов проверка вторичных диодов является обязательной процедурой. Всегда необходимо руководствоваться принципом: беда одна не приходит.

Проверка диодов Шоттки мультиметром

Проверить диод Шоттки можно с помощью мультиметра. Методика проверки такая же, как и при проверке обычного диода. Но и тут есть подводные камни. Особенно трудно проверить «текущий» диод.

Прежде всего, сборку или диод необходимо выпаять из схемы для более точной проверки. Достаточно легко определить полностью пробитый диод.

На всех пределах измерения сопротивления, неисправный диод покажет в обе стороны бесконечно малое сопротивление, то есть короткое замыкание.

Сложнее проверить диод с подозрением на « утечку». Если проводить проверку мультиметром DT-830 в режиме «диод» то мы увидим совершенно исправный элемент. Можно попробовать измерить в режиме омметра обратное сопротивление диода.

На пределе «20 кОм» обратное сопротивление диода определяется как бесконечно большое. Если же прибор показывает хоть какое-то сопротивление, допустим 3 кОм, то этот диод следует рассматривать как подозрительный и менять на заведомо исправный.

Стопроцентную гарантию может дать полная замена диодов Шоттки по шинам +3,3V и +5,0V.

Где ещё в электронике используются диоды Шоттки? Они ещё применяются в довольно экзотических приборах, таких как приёмники альфа и бета излучения, детекторах нейтронного излучения, а в последнее время на барьерных переходах Шоттки собирают панели солнечных батарей. Так, что эти не слишком востребованные на Земле приборы питают электроэнергией космические аппараты.

Источник: http://radiodvor.com/news/dlja-nachinayuschih-radiolyubitelei/diod-shottki-oboznachenie-primenenie-i-p.html

Диоды Шоттки 1N5817, 1N5818, 1N5819

Диоды Шоттки 1N5817, 1N5818, 1N5819 – полупроводниковое устройство, обладающее низким падением напряжения при прямом включении. Барьером Шоттки служит металл-полупроводниковый переход, пропускающий электрическую цепь только в одном направлении.

Предельное прямое напряжения составляет от 0,45В до 0,60В, предельное обратное напряжениеот 20В до 40В. Средний прямой ток равен , предельный обратный ток1мА.

К основным преимуществам представленных диодов Шоттки 1N5817, 1N5818, 1N5819 следует отнести уменьшенное прямое падение напряжения (в сравнении с обычными диодами) и высокое быстродействие, что объясняется отсутствием инжекционной диффузии неосновных носителей заряда.

Цилиндрический корпус диодов (тип DO-41) выполнен из литого пластика, соответствующего стандартам горючести UL 94, спецификация V-0 – процесс горения прекращается через 10 с. На торцах корпуса размещены луженые вывода аксиального проволочного типа, полярные.

Катодный вывод обозначается на корпусе круговой полоской. Также на корпусе указана краткая маркировка диода, выполненная нанесением краски.

Установка диодов Шоттки 1N5817, 1N5818, 1N5819 осуществляется с помощью пайки по THT-технологии – выводы монтируются непосредственно в сквозные отверстия печатной платы.

Важно

Повышенная рабочая температура среды составляет не более +150°С, пониженная рабочая температура – не ниже -65°С, предельная температура процесса пайки (время до 10 с) – не выше +250°С.

Применяются диоды Шоттки 1N5817, 1N5818, 1N5819 в интегральной микроэлектронике (шунтируют переходы транзисторов), в импульсных высокочастотных выпрямителях, импульсных блоках питания аналоговой и цифровой аппаратуры, зарядных устройствах батарей, конверторах, детекторах нейтронного излучения, при сборке солнечных батарей, а также в качестве приёмников альфа и бета излучения.

Более подробные характеристики представленных диодов Шоттки 1N5817, 1N5818, 1N5819, а также расшифровка маркировки, габаритные и установочные размеры приведены ниже. Гарантийный срок работы поставляемых нашей компанией диодов Шоттки составляет 2 года, что подкрепляется соответствующими документами по качеству.

Окончательная цена на аксиальные диоды Шоттки 1N5817, 1N5818, 1N5819 зависит от количества, сроков поставки и формы оплаты.

Источник: https://asenergi.com/catalog/diody/shottki-1n5817-1n5818-1n5819.html

Ссылка на основную публикацию