Тиристорный регулятор

Симисторные регуляторы мощности своими руками — схема, как работает и сборка

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором.

Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Там их с успехом заменяют схемы на тиристорах и IGBT-транзисторах. Но компактные размеры прибора и его долговечность в сочетании с невысокой стоимостью и простотой схемы управления позволили найти им применение в сферах, где указанные выше недостатки не имеют существенного значения.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Отличительной особенностью схемы является то, что динистор открывается на одинаковый угол в каждой полуволне сетевого напряжения. Вследствие этого не происходит выпрямление тока, и становится возможным подключение индуктивной нагрузки, например, трансформатора.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

Схема симисторного регулятора мощности

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.

Симисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

Блиц-советы

  • продлить срок службы лампы, регулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
  • выбирайте тип схемы и параметры компонентов по планируемой нагрузке.
  • тщательно проработайте схемные решения.
  • будьте внимательны при сборке схемы, соблюдайте полярность полупроводниковых компонентов.
  • не забывайте, что электрический ток есть во всех элементах схемы и он смертельно опасен для человека.

Источник: https://orcmaster.com/electro/stabilizator/simistornye-regulyatory-moshhnosti.html

Разновидности регуляторов скорости вращения вентиляторов

Асинхронные двигатели переменного тока довольно часто используются в самых различных целях как в бытовой, так и профессиональной жизни человека. Они применяются в системах вентиляции, для управления различными механизмами и прочее. Если пересмотреть даже самое простое жилье, то найдется несколько таких устройств:

Оглавление:

  • Способы регулирования скорости вращения асинхронного двигателя
  • Электронные схемы управления скоростью вращения асинхронными двигателями
  • Симисторные схемы
  • Тиристорный регулятор скоростью вращения вентилятора
  • Транзисторные схемы
  • Купить или сделать своими руками?
  • Подключение регулятора скорости вращения вентилятора
  • Трехфазные вентиляторы
  • Газовые котлы и нагреватели. В конструкции современных котлов имеются вентиляторы турбинного типа и помпы для прокачки воды с питанием от сети 220 В.
  • Холодильники и морозильники. Компрессор бытовой холодильной камеры представляет собой асинхронный двигатель, имеющий 2 обмотки: пусковую и рабочую.
  • Системы вентилирования помещений. Асинхронные двигателя отлично работают в качестве приточно-вытяжных вентиляторов, обеспечивая эффективный воздухообмен внутри помещений, что позволяет поддерживать оптимальный микроклимат и, соответственно, здоровье проживающих в нем людей.

Сфер использования асинхронных двигателей много, но довольно часто требуется обеспечить плавное регулирование оборотов двигателя. В частности, всевозможные бытовые вентиляторы как мобильного типа, так и встраиваемые.

Не всегда требуется максимальная мощность воздухообмена. Во многих случаях необходимо уменьшить частоту вращения двигателя, снизив шум и интенсивность движения воздушного потока.

Но как организовать управление скоростью вращения двигателя, чтобы обеспечить необходимые режимы работы и интенсивность воздухообмена?

Способы регулирования скорости вращения асинхронного двигателя

Сегодня можно купить регулятор скорости вращения вентилятора нескольких типов в зависимости от конструкции или способа регулирования. Выбор конкретного устройства зависит от основных параметров системы, ее функциональных характеристик. Есть много практических схем регуляторов, основанных на различных принципах управления:

Регулирование напряжением – принцип регулирования оборотов основан на изменении питающего напряжения с определенного уровня до максимума. Нижний порог зависит от характеристик самого двигателя, его конструкции и параметров обмоток.

Этот режим является более простым в реализации, для чего можно использовать автотрансформаторы, симисторы или транзисторные схемы с регулированием напряжения. К нюансам работы подобных схем относится то, что двигатель, кроме скорости вращения, теряет и часть своей мощности.

Кроме этого, существенно нагреваются обмотки двигателя, что говорит не о снижении мощности, а о ее подавлении на компонентах схемы, поэтому и об экономичности этих решений говорить не стоит.

Частотные регуляторы – самый эффективный метод управления скоростью вращения, позволяющий сохранять момент двигателя.

Также частотный принцип изменения оборотов может обеспечить со снижением скорости вращения и экономию мощности, поэтому такая схема является более эффективной.

Обратите внимание

Но из-за сложности реализации конструкции стоимость аппаратуры становится довольно высокой. По этой причине многие предпочитают использовать более простые устройства с регулированием напряжения.

Диммеры или схемы с автоматическим включением вращения. Представляют собой устройства, изготовленные на фотоэлементах или на звуковых датчиках, которые включат вентилятор по хлопку или по появлению объекта в зоне видимости сенсоров. Такие устройства актуально использовать в туалете, когда постоянно забываешь выключать свет.

Трансформаторные системы регулирования скорости вращения двигателей

На регулятор скорости вращения вентилятора 220в схема достаточно проста. Ступенчатое изменение осуществляется при помощи автотрансформаторов с дополнительными обмотками. Количество ступеней может быть любым, что зависит от плавности и дискретности переключения режимов. Трансформаторные устройства регулирования являются достаточно надежными и практичными.

Но сложность заключается в том, что переключение ступеней обычно выполняется механическим способом посредством 5-ступенчатого переключателя.

В более дорогих устройствах применен принцип ступенчатого управления, но с использованием электронных ключей.

Благодаря отсутствию скользящих контактов исключается вероятность искрения и прогорания контактных площадок на больших мощностях. Плюс ко всему осуществляется полностью беззвучное переключение между режимами.

К нюансам подобных устройств следует отнести:

  • Большие габариты – используемый трансформатор обычно имеет существенный вес, даже при выполнении регулирования скорости оборотов небольшого по размерам и мощности вентилятора.
  • Сложность изготовления системы регулирования для более мощных двигателей. При использовании мощных асинхронных моторов габариты автотрансформатора существенно увеличиваются, что делает систему регулирования тяжелой и неудобной.
  • Стационарность. Трансформаторные системы в основном являются монтируемыми на месте и непереносными, что исключает возможность мобильности.

Электронные схемы управления скоростью вращения асинхронными двигателями

Существует много вариантов реализации электронных систем регулирования угловой скоростью и все они имеют свои особенности. Отличительной чертой всех является сложность реализации, но при этом стоимость меньше, чем трансформаторных систем.

На практике используются следующие разновидности схем управления оборотами:

  • симисторные устройства;
  • тиристорные схемы;
  • транзисторные аппараты.

Симисторные схемы

Симисторные устройства регулирования – наиболее простые в реализации и довольно практичные решения. Для регулирования угла отпирания симисторов используется динистор, что сокращает количество используемых компонентов для реализации управления.

Благодаря способности компонента проводить ток в двух направлениях, обеспечивая тем самым регулирование переменного напряжения. А это, по сути, и является фактором дешевизны, простоты устройств.

Читайте также:  Катушка тесла

Регуляторы могут быть реализованы в небольших корпусах, непосредственно вместе с рычагами и переключателями.

Довольно часто такие схемы исполняются в виде стандартных выключателей, только вместо клавиши-качельки применен вращающийся регулятор.

Симисторные схемы позволяют обеспечивать плавное регулирование скорости, но за счет изменения входного напряжения, а не частоты, КПД оказывается невысоким.

Важно

Невзирая на это, многие производители бытовой техники предпочитают именно такие схемы, потому что они являются более дешевыми в исполнении.

К тому же с их помощью можно выполнять регулирование оборотов мощных вентиляторов.

Тиристорный регулятор скоростью вращения вентилятора

Тиристорный регулятор скорости вращения вентилятора по принципу работы сход с симисторными устройствами, но он более детальный.

Для управления асинхронным двигателем необходимо использовать либо 2 тиристора, либо мощный выпрямительный мост и 1 тиристор, не учитывая схему отпирания его посредством сдвига фазы.

Стоимость и сложность реализации устройства управления выше и сложнее, но при этом она является более доступной, потому что силовых компонентов можно найти много в старой советской аппаратуре.

Транзисторные схемы

Они могут осуществлять как изменение напряжения, так и частоты управления скорости вращения вентилятора.

Особой разницы в схеме реализации замечено явно не будет, потому что изготовить генератор импульсов и обеспечить ключевой режим работы транзистора не так уж и сложно, но для обеспечения необходимой надежности работы аппарата лучше использовать IGBT или высококачественные полевые транзисторы с изолированным затвором и диодом Шоттки. Стоимость таких компонентов будет высокая, не учитывая сложность программы управления работой транзисторов.

Купить или сделать своими руками?

Любые из представленных вариантов устройств всегда можно купить, а при желании сделать своими руками. Но существует такой фактор, как целесообразность, потому что качественные схемы найти сложно, а стоимость готовых устройств меньше, чем если бы вы его изготовили своими руками.

Более того, сегодня купить регулятор скорости вращения вентилятора на 220 В можно на любую мощность, но стоит понимать, что использование диммера для автоматического включения освещения не целесообразно, так как он не вытянет по току нагрузки.

Если все же вы решили купить диммер для вентилятора, то на рынке вы найдете массу предложений от различных производителей. Притом устройства изготавливаются на различную мощность. Но в основном эти аппараты рассчитаны на небольшие двигатели, устанавливаемые в вентиляции санузлов и кухонь.

Подключение регулятора скорости вращения вентилятора

Подключение регулятора скорости вентилятора осуществляется достаточно просто. Каждый производитель предусматривает на корпусе аппарата схему, в которой четко прописаны выводы, куда необходимо подавать фазу, ноль и подключать сам двигатель. Фактор ошибки минимален, поэтому не придется обращаться к услугам квалифицированных электриков.

Трехфазные вентиляторы

Больше осложнений возникнет с трехфазными вентиляторами, потому что управление необходимо организовать по всем 3 проводам.

Здесь можно также использовать как изменение входного напряжения, так и частоты. В любом случае более качественным и энергоэффективным является именно частотный метод.

Поэтому для подключения трехфазного вентилятора лучше покупать готовые преобразователи.

Источник: https://remontoni.guru/sistemy-ventilyatsii/raznovidnosti-regulyatorov-skorosti-vrashheniya-ventilyatorov.html

Тиристорный регулятор как средство экономии энергии в нагревательных системах

Компания «Энергис» (г. Киров) основана в 1990 году и более 14 лет является дилером компании ОВЕН.

За годы работы «Энергис» развился в многопрофильное инжиниринговое предприятие, которое занимается разработкой и внедрением автоматизированных систем управления технологическими процессами различных отраслей промышленности и ЖКХ на базе компонентов автоматизации ОВЕН. Одной из успешных технических разработок фирмы являются тиристорные регуляторы напряжения, которые выпускаются с 1998 года.

Актуальность разработки тиристорных регуляторов

Оборудование, напрямую преобразующее электрическую энергию в тепло, имеется практически во всех отраслях народного хозяйства – электропечи пищевых предприятий, электрокотлы в жилищно-коммунальном хозяйстве, электротермические установки в различных отраслях промышленности. Несмотря на повышение стоимости энергии, эффективность использования энергоресурсов в России до сих пор остается недопустимо низкой. Поэтому ограничение мощности, потребляемой электрооборудованием — первостепенная задача практического энергосбережения.

Невозможно качественно решить задачу управления мощностью, применяя так называемое «релейное» регулирование, имеющее на предприятиях определенное распространение.

Релейный принцип регулирования нагрузки содержит известные «издержки» — невысокая точность установки уровня включения/выключения, переходные процессы в электрических цепях и колебания напряжения, высокие эксплуатационные затраты на обслуживание релейно-контакторных схем.

Кроме того, современные технологические процессы на предприятиях требуют высокой точности регулирования, то есть непрерывного регулирования в привязке к параметрам технологических процессов и в реальном масштабе времени.

Любое электрооборудование имеет максимальный ресурс (срок эксплуатации) только при условии ограничения отклонений (колебаний) напряжения питающей сети в допустимых пределах.

Таким образом, для эффективного управления электрической нагрузкой следует применять непрерывные законы регулирования, воплощенные в бесконтактных устройствах – тиристорных регуляторах напряжения (ТРН).

Совет

Основными требованиями при разработке оборудования стали необходимость иметь гибкую конфигурацию, применимость для решения различных задач регулирования и ограничения электрической нагрузки питающей сети, а также обеспечение требуемой точности поддержания физического параметра (например, температуры).

В ТРН реализованы два метода управления тиристорами – фазоимпульсный и числоимпульсный.

Функциональные особенности

Разработанный ТРН предназначен для плавного регулирования действующего напряжения на активной нагрузке вручную или дистанционно (автоматически) в стандартной сети напряжением 220/380 В с частотой 50 Гц.

Основная область применения – управление нагревательными установками различного назначения, а также осветительными установками с лампами накаливания.

ТРН обеспечивает плавное регулирование напряжения в каждой фазе раздельно (или совместно) в % от номинального входного напряжения. Эта функция реализуется вручную кнопками или поворотной ручкой на панели управления ТРН или дистанционно.

Принцип работы регулятора ТРН основан на изменении угла отпирания силовых тиристоров, величина которого определяется в зависимости от величины внешнего управляющего сигнала (4…20 мА), подаваемого на вход ТРН.

На объектах с электронагрузками без рабочей нейтрали ТРН отслеживает отклонения напряжения в фазах питающей сети и уравнивает работу нагрузки в фазах. Таким образом представлен не только регулятор угла отпирания силовых тиристоров, а также следящая система уравновешивания в любой промышленной трехфазной сети.

Преимущества применения ТРН основаны на конструктивных особенностях изделия:

  • блочно-модульная схема ТРН доступна при наладке и обслуживании и более того, допускает замену блоков без дополнительной регулировки;
  • защита настроек ТРН исключает последствия вмешательства или несанкционированного отключения сети;
  • дистанционное управление ТРН допускает раздельное регулирование в фазах (группы нагревателей, линии освещения и т.д.);
  • пуско-наладочные работы с ТРН доступны электромонтеру средней квалификации, выполняющему требования Правил техники безопасности в электроустановках до 1000 В.
  • два метода управления тиристорами – фазоимпульсный и числоимпульсный;
  • возможность встраивания в действующие на предприятиях системы автоматизации с использованием RS-232, RS-485, поддерживает протокол ModBus;
  • возможность работы в «грязных» питающих электросетях, где качество электроэнергии не соответствует нормам ГОСТ 13109-97;
  • применение металлических шкафов с различной степенью защиты (IP).

Изначально – на стадии разработки ТРН – в качестве ПИД-регулятора применялся ОВЕН ТРМ10-Pic, который зарекомендовал себя как надежный и недорогой прибор с необходимым набором функций. В последствии, по мере расширения и модернизации линейки приборов ОВЕН, в ТРН стали применять более современные регуляторы — ТРМ101, ТРМ151.

Перспективным, на наш взгляд, решением стала разработка прибора ТРМ251, который благодаря своей функциональности, простоте и удобным пользовательским интерфейсом, удачно вписался в ТРН в качестве программного ПИД-регулятора и задатчика температуры.

Сейчас при производстве ТРН мы применяем практически весь спектр ПИД-регуляторов ОВЕН, в том числе ТРМ148, ТРМ210. Эти приборы отличаются современным алгоритмом автонастройки, что немаловажно для предприятий – конечных потребителей, испытывающих нехватку квалифицированного эксплуатационного персонала.

Обратите внимание

Конкретный тип прибора ОВЕН определяется технической задачей, которую должен решать ТРН на предприятии заказчика.

Проведя мониторинг модификаций ТРН, изготовленных за 12 лет по различным техническим требованиям заказчиков, и на основе маркетингового анализа рынка, мы остановились на производстве ТРН (одно- и трехфазных) со следующими опциями:

  • плавное регулирование напряжения на активной нагрузке;
  • автоматическое поддержание заданной температуры (ПИД-регулирование) в одно- и многозонных электрических печах;
  • стабилизация выходного напряжения;
  • мониторинг электрических параметров нагрузки и её защитное отключение (встроенный монитор нагрузки);
  • мониторинг технологических параметров нагрузки (температура, состояние, время и т.п.) и их архивация на компьютере.

Схема последней модификации ТРН включает в себя ПИД-регуляторы (ОВЕН ТРМ10, ТРМ101, ТРМ151, ТРМ148 или ТРМ251), преобразователь интерфейса ОВЕН АС3-М, SCADA-систему OWEN PROCESS MANAGER, модуль МСД-100, термопары ОВЕН ДТПК (ТХА). Конкретная модификация ТРН с необходимыми опциями определяется при заполнении опросного листа.

Практическое применение ТРН

Практическое применение разработанные регуляторы напряжения ТРН нашли на разных предприятиях России. На предприятии «Аврора-ЭЛМА» (г. Волгоград) для производства пъезокерамических элементов применяются электропечи с особыми характеристиками. Особенность этих печей состоит в применяемых нагревательных элементах полупроводникового типа.

Для управления температурой при запуске необходимо глубокое регулирование напряжения на нагревательном элементе. Для этих целей был применено 15 регуляторов ТРН с максимальным током 160 А, управляемые дистанционно от ШИМ регулятора.

Применение данной системы позволило исключить сверхвысокие пусковые токи электропечи и обеспечить следящий режим регулирования температуры рабочей зоны.

В химическом производстве, производстве полимеров ТРН обычно применяются для точного регулирования тепловых характеристик компонентов и готовой продукции, как например, это реализовано на предприятии ОАО «КОМИТЭКС» (Республика Коми) при производстве полимерных строительных материалов и линолеумов.

Для строительства и горной промышленности применяются специальные ЩУВ-ТРН. Это регулятор для управления интенсивностью вибромашин, необходимых для автоматизации узлов сортировки и разгрузки ГОКов, а также для уплотнения и усадки бетонных смесей при производстве строительных элементов.

На базе имеющейся системы регулирования оптотиристорами была реализована схема с однополупериодным регулированием и силовым сглаживающим дросселем. Отличительной особенностью является индуктивный характер нагрузки на вибромашине.

Регулятор ЩУВ-ТРН обеспечивает надежную устойчивость режимов регулирования при эксплуатации на объекте.

Важно

В целом на предприятиях России, Южной Осетии, Казахстана, Узбекистана установлено более 1500 регуляторов ТРН различных мощностей и модификаций.

Применение описанных тиристорных регуляторов напряжения позволяет отказаться от громоздких релейно-контакторных схем управления, сократить время простоя оборудования из-за поломок, увеличить производительность и повысить качество выпускаемой продукции.

Источник: https://www.owen.ru/project/Tiristorny_regulyator_kak_sredstvo_ekonomii_energii_v_nagrevatelnux_sistemax

Тиристорные регуляторы мощности производства PMA и CD Automation — BG electric e.K

Группа компний West Control Solutions, к которой принадлежат немецкая фирма PMA и итальянская CD Automation является мировым лидером в области разработки и производства тиристорных регуляторов мощности и в течение последнего десятилетия развивается особенно быстрыми темпами, предоставляя заказчику новейшие разработки, основанные на современных технологиях. Регуляторы разрабатываются и изготавливаются в Германии и в Италии, в их элементной базе используются электронные компоненты только проверенных известных производителей. Всё это обеспечивает европейское качество и высокую надёжность в работе. Здесь размещена флэш-фотогалерея предлагаемых приборов.
Для просмотра установите Adobe Flash Player или активируйте настройки JavaScript.
При затруднении обратитесь к системному администратору.

Читайте также:  Сушилка для овощей своими руками

Для просмотра диашоу нажмите стрелку посредине, для пошагового просмотра пользуйтесь боковыми стрелками.

Тиристорные регуляторы мощности используются во всех отраслях промышленности, где необходимо управлять большими активными и индуктивными нагрузками, например, в промышленных печах, при переработке пластмасс, на транспорте. Тиристорный регулятор мощности состоит из двух встречно-параллельно включенных силовых тиристоров, изолированного радиатора и электроники управления.

Микропроцессорное управление полностью гальванически отделено от силовой схемы. Регуляторы содержат ограничитель тока и специальные алгоритмы для кремниевых, карбидных и суперканталовых нагревательных элементов. Регуляторы имеют до пяти различных входов управления на выбор заказчика, выходы для извещений и ретрансмиссии сигнала, обратную связь по мощности, току или напряжению в нагрузке.

Встроенный электронный ограничитель тока следит за перегрузками. CD Automation была одной из первых компаний в области разработки тиристорных регуляторов, управляемых микропроцессорами. Регуляторы имеют последовательный интерфейс RS485, который позволяет реализовывать коммуникации с различными полевыми шинами.

Референции по тиристорным регуляторам мощности за 2006-2017 г.

Классификация базовых серий тиристорных регуляторов

Серия Relay S (предыдущее исполнение CD3000S) относится к экономклассу и не располагает шинным интерфейсом. Новая серия Relay S является модернизированным вариантом CD3000S и имеет функциональные и сервисные отличия. В частности, в новой серии опция Heater Break Alarm, а также пакетная коммутация BF(4-8-16) может устанавливаться на все модели, вплоть до макс. тока 700А.

Нижний предел линейки макс. токов в новой серии поднят до 30А. В сегменте до 210А применяются модернизированные модули REVO. Коммутация силовых тиристоров происходит при переходе напряжения через ноль. Применяются для однофазной или трехфазной резистивной нагрузки. Управление осуществляется электрическим логическим сигналом «вкл/выкл» или аналоговым сигналом.

Серия Relay M (предыдущее исполнение CD3000M) относится к среднему классу и имеет оптимальное соотношение цена/качество. Новая серия Relay M является модернизированным вариантом CD3000M и имеет функциональные и сервисные отличия. В частности, в новой серии предлагается повышенное максимальное напряжение 690В в моделях с максимальным током 400…700А. Нижний предел линейки макс.

токов поднят до 30А. В сегменте до 210А применяются модернизированные модули REVO, все модели оснащены дисплеем. В новой серии пакетная и фазовая коммутация дополнена программируемым плавным пуском. Дополнительно имеется возможность выбирать обратную связь по напряжению или по мощности в нагрузке.

Совет

Все регуляторы этой серии имеют микропроцессорное управление и располагают интерфейсом RS485 с протоколом MODBUS. Применяются для однофазной или трехфазной нагрузки. На выбор предлагается пять способов (различных входов) управления мощностью в нагрузке в комбинации с различными методами коммутации силовых тиристоров.

Серия Relay CL (предыдущее исполнение CD3200) представляет собой наилучшее решение для регулирования мощности в однофазной нагрузке с токами до 700А, располагают интерфейсом RS485 с протоколом MODBUS и особенно хорошо подходят для трансформаторной или смешанной нагрузки.

Новая серия Relay CL является модернизированным вариантом CD3200 и имеет функциональные и сервисные отличия. В частности, в новой серии Relay CL предлагается повышенное максимальное напряжение 690В в моделях с максимальным током 400…700А. Нижний предел линейки макс. токов поднят до 30А.

В сегменте до 210А применяются модернизированные модули REVO, все модели оснащены дисплеем. В новой серии дополнительно к фазовой коммутации впервые предлагается пакетная коммутация, таким образом достигается универсальность для пользователя.

Серия REVO (составная часть серий Relay) представляет собой новое исполнение с токами нагрузки от 30А до 210А и включена в соответствующие серии Relay. Модули имеют встроенные трансформатор тока и держатель плавкого предохранителя с быстрым доступом через переднюю панель, что значительно уменьшает потери времени на контроль и замену сгоревших предохранителей.

Имеется исполнение в виде компактной комбинации регулятора мощности с интегрированным температурным PID-регулятором. Серия PM3000 E (предыдущее исполнение CD3000E) применяется только для трехфазной нагрузки, относится к продвинутому классу и имеет наибольшее в своем классе количество опций и разнообразных возможностей для пользователя.

Новая серия Relay E является модернизированным вариантом CD3000E и имеет функциональные, параметрические и сервисные отличия. В частности, в новой серии нижний предел линейки макс. токов поднят до 30А. В сегменте до 210А применяются модернизированные модули REVO, все модели оснащены дисплеем и фронтальным разъёмом для конфигурирования регулятора.

В новой серии стандартная пакетная коммутация дополнена пакетной коммутацией с задержкой тока, что позволяет использовать такой регулятор с индуктивной нагрузкой при двухканальном управлении мощностью и обеспечивает наиболее экономичное решение. Дополнительно имеется возможность выбирать обратную связь по всем возможным параметрам в нагрузке.

Обратите внимание

На выбор предлагается пять способов (различных входов) управления мощностью в нагрузке в комбинации с различными методами коммутации силовых тиристоров. Все регуляторы этой серии имеют полностью цифровое управление, базирующееся на мощном высокопроизводительном микропроцессоре и располагают интерфейсом RS485 с протоколом MODBUS.

Применяются в основном для работы с мощными трехфазными трансформаторами с токами до 700А, ко вторичной обмотке которых подключается резистивная нагрузка с высокой зависимостью температурных параметров от срока службы и старения, часто несбалансированная.

Серия POWERSTACK (предыдущее исполнение MULTIDRIVE) относится к наиболее продвинутому классу в сегменте больших токов, вплоть до 2700А и имеет наибольшее в своем классе количество опций и разнообразных возможностей для пользователя, настоящий «All inclusive» и имеет наибольшее число сервисных функций, логических входов и релейных выходов.

Новая серия POWERSTACK является модернизированным вариантом MULTIDRIVE и имеет функциональные, параметрические и сервисные отличия. В частности, в новой серии нижний предел линейки макс. токов для однофазных моделей поднят до 850А. Серия POWERSTACK, в отличие от MULTIDRIVE предлагает повышенное максимальное напряжение 690В во всй линейке регуляторов для всех нагрузок.

Все модели оснащены дисплеем и фронтальным разъёмом для конфигурирования регулятора. Серия содержит все возможные опции, как стандарт. В том числе ограничитель тока, система диагностики нагрузки, последовательный интерфейс. Программное обеспечение поставляется бесплатно, оно хорошо анимировано и позволяет изменять настройки и конфигурацию регулятора даже в «горячем» режиме, без снятия напряжения с нагрузки. Дополнительно имеются два активных входа управления мощностью нагрузки, переключаемых оператором с помощью логического сигнала.

Регуляторы легко монтируются в распределительный шкаф на DIN-рейку или непосредственно на заднюю монтажную панель шкафа, а при применении большого количества мощных регуляторов, для них выделяется специальное помещение. Поскольку такие объекты выделяют много тепла, желательно помещения вентилировать.

Трехфазные тиристорные регуляторы Relay-2РН с регулированием по двум фазам применяются для регулирования трехфазной нагрузки, подключенной по трехпроводной схеме в «звезду без нейтрали» или «треугольник», при этом третья фаза регулируется автоматически. Это экономичное решение имеет наилучшее соотношение цены, возможностей и качества и применяется повсеместно, особенно там, где на производстве имеется много трехфазных нагревателей.

Варианты коммутации силовых тиристоров

Тиристорные регуляторы располагают различными вариантами коммутации силовых тиристоров, каждый из которых выбирается при заказе индивидуально для решения конкретной технической задачи и каждый из которых имеет собственные преимущества и недостатки.

Основным критерием правильного выбора способа коммутации является характер нагрузки (резистивная или индуктивная) и выбранный пользователем способ управления мощностью (управляющий вход). В таблице представлены все предлагаемые варианты коммутации силовых тиристоров.

Для просмотра содержания таблицы наведите курсор на название, для фиксации используйте двойной клик.

Символ Тип коммутации тиристоров Описание
ZC Zero Crossing Управление «вкл/выкл» Простейший способ управления нагрузкой, внешнее управление логическим сигналом «вкл/выкл». Переключение тиристоров происходит при переходе напряжения через ноль, не создавая помех. Подходит для термических инерционных процессов.
SC Single Cycle Управление одним периодом Управление единичным периодом или числом периодов напряжения на нагрузке пропорционально входному аналоговому сигналу. Это разновидность пакетной коммутации с более равномерным распределением энергии по времени. Подходит для термических неинерционных быстроменяющихся процессов.
BF Burst firing Пакетная коммутация представляет собой широтно-импульсный способ управления, при котором мощность зависит от соотношения длительности напряжения к длительности паузы на протяжении определённого времени. Переключение происходит в момент перехода напряжения через ноль. Для регулирования мощности изменяется ширина пакета периодов напряжения. Пакетная коммутация подходит для активной (резистивной) нагрузки, но не подходит для регулирования уровня освещенности.
S+BF Soft Start + Burst Firing Плавный пуск + пакетная коммутация Этот способ представляет собой пакетную коммутацию в сочетании с программируемым плавным пуском, он хорошо подходит для нагрузки с низким сопротивлением в холодном состоянии и нагрузки, подверженной быстрому старению.
DT+BF Delay Triggering + Burst Firing Пакетная коммутация в сочетании с программируемой задержкой включения тиристоров обеспечивает ограничение бросков тока в начале каждого пакета. Задержка может быть установлена от 0 до 100° и оперативно изменена в зависимости от индуктивного сопротивления нагрузки. Хорошо подходит для трансформаторов, не создавая помех в питающей сети.
PA Phase Angle Фазовая коммутация представляет собой управление моментом открывания тиристоров в каждом периоде напряжения. Ток через нагрузку течёт от момента открытия тиристора до момента перехода напряжения через ноль. Действующее напряжение на нагрузке пропорционально входному аналоговому сигналу. Это наиболее точный и быстрый способ управления, хорошо подходит для трансформаторной нагрузки.
S+PA Soft start + Phase Angle Плавный пуск + фазовая коммутация Этот способ представляет собой фазовую коммутацию в сочетании с программируемым плавным пуском, он хорошо подходит для трансформаторной и смешаной нагрузки, особенно с низким сопротивлением в холодном состоянии и нагрузки, подверженной быстрому старению.

Входы управления регулятором мощности

Тиристорные регуляторы располагают различными вариантами входов управления мощностью. Подходящий вход выбирается при заказе индивидуально, в соответствии с требованиями заказчика. В большинстве случаев заказчик может оперативно изменить тип используемого входа, изменив конфигурацию регулятора с помощью кнопок или с помощью бесплатного программного обеспечения. В последнем случае потребуется дополнительно кабель-адаптер.

Символ Тип входа Управление мощностью
SSR Логический вход ВКЛ/ВЫКЛ постоянным напряжением 4…30 В
110 VAC ВКЛ/ВЫКЛ переменным напряжением 110 В +/- 15%
230 VAC ВКЛ/ВЫКЛ переменным напряжением 230 В +/- 15%
4-20 mA Аналоговый вход

Источник: http://www.germany-electric.ru/177

О современных тиристорных регуляторах

14 мая 2013 г. в 16:12, 2002

Регулирование мощности требуется в различных технологических процессах, главным образом для поддержания заданного температурного режима с помощью электронагревателей или печей.

Тиристорные схемы получили широкое распространение еще в 70-е годы прошлого века благодаря своей надежности и высокому КПД. Эти качества в сочетании с невысокой ценой делают тиристорный регулятор тока оптимальным решением для задач регулирования в современных системах промышленной автоматизации.

Тиристорный регулятор (далее по тексту — ТР) способен регулировать мощность в нагрузке двумя методами:

1) фазовый метод, при котором каждый полупериод сетевого напряжения силовые тиристоры отпираются с временной задержкой Тз. Форма выходного напряжения проиллюстрирована на рисунке 1. Серым цветом заштрихована область, соответствующая наличию напряжения на нагрузке. Чем больше временная задержка отпирания Тз, тем меньше напряжение на выходе.

Рисунок 1. Фазовый метод регулирования

Преимущества метода:

  • непрерывность регулирования позволяет поддерживать температуру объекта с высокой точностью, что особенно важно для объектов регулирования с малой тепловой инерцией, для которых недопустимы даже незначительные перерывы в подаче напряжения, поскольку это ведет к колебаниям температуры, приводящим к браку технологического процесса;
  • возможность осуществления плавного пуска для исключения больших пусковых токов. Это очень важное свойство, поскольку распространенным случаем является пониженное сопротивление нагревательного элемента в холодном состоянии. Классический пример — лампа накаливания, через которую в момент включения протекают пусковой ток в 10 раз больше номинального, что приводит к ее преждевременному износу. Применение плавного пуска путем подачи пониженного напряжения и постепенное его увеличение по мере роста сопротивления нагревательного элемента многократно продлевает его срок службы.
Читайте также:  Как выбрать посудомоечную машину

Недостатки метода:

  • внесение сильных импульсных помех в сеть и радиоэфир. Помехи создаются при коммутационных выбросах, возникающих при переключении тиристоров, и скачкообразном нарастании тока в нагрузке. Помехи могут влиять на работу чувствительной радиоэлектронной аппаратуры;
  • внесение в сеть нелинейных искажений.

    Форму тока при регулировании фазовым методом часто называют «рубленой синусоидой». Кривая тока помимо основной гармоники содержит высшие гармонические составляющие, которые вызывают искажения кривой напряжения.

    В ряде случаев искажения бывают настолько сильными, что форма сетевого напряжения лишь отдаленно напоминает синусоиду;

  • потребление из сети реактивного тока даже при чисто активной нагрузке и, как следствие, понижение коэффициента мощности сети.

Импульсные помехи и нелинейные искажения можно свести к минимуму путем дополнительной установки сетевых фильтров. Как правило, такие фильтры состоят из двух частей: индуктивной, сглаживающей кривую тока, и емкостной, подавляющей высокочастотные помехи.

В зависимости от требований по снижению уровня помех и нелинейных искажений, стоимость сетевых фильтров может варьироваться в широких пределах: от 20% до 100% и более стоимости самого тиристорного регулятора.

Впрочем, довольно часто сетевые фильтры не устанавливаются вообще, поскольку, во-первых многие нагрузки имеют индуктивную составляющую (например, при питании нагревателей через развязывающий трансформатор), а во-вторых искажения и помехи частично подавляются собственной индуктивностью сети. Индуктивное сопротивление сети обусловлено индуктивностью вторичной обмотки трансформаторной подстанции, собственной индуктивности проводов и кабелей и индуктивностью петли «фаза-ноль».

2) метод пропуска числа периодов, при котором тиристоры включены и выключены в течение некоторого целого числа периодов (рис.2). Другие распространенные названия этого метода — числовой или волновой.

Рисунок 2. Метод регулирования пропуском периодов

Преимущества метода:

  • не вносятся импульсные помехи в сеть.

    Поскольку включение тиристоров происходит в момент перехода сетевого напряжения через ноль, ток в нагрузке нарастает плавно, не вызывая электромагнитных помех.

  • не вносятся в сеть нелинейные искажения, поскольку нагрузка питается синусоидальным напряжением;
  • нет потребления реактивного тока при чисто активной нагрузке.

Недостатки метода:

  • дискретность регулирования не дает возможность поддерживать температуру с высокой точностью;
  • не годится для регулирования уровня освещенности;
  • при определенных условиях возможно появление в сети субгармоник, то есть гармоник, частоты которых меньше частоты сети.

Российскими и иностранными фирмами выпускаются одно- и трехфазные модификации тиристорных регуляторов. Однофазный тиристорный регулятор может коммутировать на нагрузку как фазное, так и межфазное напряжение сети (см. рис.3).

Рисунок 3. Подключение нагрузки к однофазному ТР

Нагрузка к выходу трехфазного тиристорного регулятора подключается по одной из четырех схем:«звезда» с рабочим нулем (рис 4), «звезда» (рис. 5), «треугольник» (рис. 6), разомкнутый «треугольник»(рис. 7).

Рисунок 4. Подключение нагрузки к ТР по схеме «звезда» с рабочей нейтралью
Рисунок 5. Подключение нагрузки к ТР по схеме «звезда»
Рисунок 6. Подключение нагрузки к ТР по схеме «треугольник»
Рисунок 7. Подключение нагрузки к ТР по схеме разомкнутый «треугольник»

Распространенным случаем является так называемое многозонное регулирование, когда сопротивления нагрузки разнесены пространственно и возникает задача раздельного регулирования мощности в каждом из сопротивлений.

Здесь возможны варианты: либо использование нескольких однофазных регуляторов, либо применение тиристорного регулятора с функцией раздельного регулирования напряжения по каждой фазе. Отметим, что далеко не все тиристорные регуляторы поддерживают эту функцию.

Важно

Раздельное регулирование возможно лишь при подключении нагрузки по схемам «звезда» с рабочей нейтралью или разомкнутый «треугольник».

При подключении нагрузки по схемам «звезда» или «треугольник» возможно лишь совместное управление фазами, поскольку в этом случае изменение напряжения на одном из сопротивлений нагрузки приводит к изменению напряжения на двух других сопротивлениях.

Системы управления современных тиристорных регуляторов строятся на основе микропроцессорной техники и представляют потребителю широкий набор сервисных функций. Рассмотрим наиболее важные из них.

А) Электронная защита от короткого замыкания

Цифровой сигнальный процессор системы управления осуществляет непрерывное аналого-цифровое преобразование и дальнейшую цифровую обработку сигналов, поступающих с датчиков тока.

В качестве датчиков тока чаще используются трансформаторы тока или датчики на основе магниточувствительного элемента Холла; реже используются измерительные шунты, поскольку при их использовании усложняется система управления в связи с необходимостью обеспечения гальванической развязки измерительного сигнала с шунта от силовой сети.

В случае регистрации многократного возрастания тока система управления блокирует выдачу управляющих импульсов на тиристоры, выдает предупредительное сообщение и запрещает подачу напряжения на нагрузку до устранения неисправности.

Некоторые модели тиристорных регуляторов не имеют электронной защиты и защищены от токов короткого замыкания специальными быстродействующими предохранителями.

Такая защита имеет преимущество в простоте и вполне допустима, однако на практике существует проблема в том, что для импортных моделей тиристорных регуляторов требуются оригинальные «фирменные» предохранители, которые стоят недешево (20-50$), а срок их поставки может составлять до трех месяцев.

Причем заменить отечественными предохранителями их не удается: во-первых, их быстродействие существенно ниже импортных, а во-вторых, они просто не подходят по посадочным местам.

Поэтому зачастую на практике можно встретиться со случаем, когда у находящегося в эксплуатации импортного тиристорного регулятора в колодку предохранителя вставлен гвоздь, болт, шпилька или другой элемент строительного крепежа. Кроме того, применение электронной защиты на основе датчиков тока выгодно еще тем, что система управления в этом случае, как правило, отображает токи нагрузки на дисплее, а это очень удобно для наблюдения за технологическим процессом.

Б) Защита от потери фазы

Отсутствие одной из фаз в сети может вызвать «перекос» токов в сопротивлениях нагрузки, что в ряде случаев недопустимо. Система управления осуществляет постоянное слежение за наличием напряжения сети и немедленного отреагирует по запрограммированному алгоритму в случае потери фазы, „слипания“ фаз или выходе качественных параметров напряжения на недопустимо низкий уровень.

В) Защита от перегрева

В случае если тиристорный регулятор установлен в плохо вентилируемом месте, при длительной перегрузке или если затруднен отвод выделяющегося тепла (например, при отказе вентиляторов обдува) радиатор охлаждения может нагреться до высокой температуры 90..100 С. Дальнейшее нарастание температуры может привести к выходу тиристоров из строя и даже возгоранию. Для предотвращения этого на радиатор устанавливается датчик температуры, по сигналу с которого система управления обесточивает нагрузку.

Г) Контроль исправности тиристоров

Лучшие модели тиристорных регуляторов напряжения осуществляют диагностику исправности тиристоров. Эта функция очень важна не только по той причине, что позволяет вовремя обнаружить неисправное устройство, но и потому, что иногда она предотвращает еще большую аварию.

Например, если нагрузка подключена через трансформатор, то при внутреннем обрыве или коротком замыкании одного из тиристоров происходит подача на трансформатор напряжения, имеющего постоянную составляющую, и как следствие, резко увеличивается ток намагничивания трансформатора, ведущий к интенсивному нагреву и выходу трансформатора из строя.

Поэтому быстро обнаруженная неисправность тиристорного регулятора может предотвратить порчу дорогостоящего оборудования.

Д) Защита от несимметрии выходных токов

Несимметрия токов трехфазной нагрузки более 10-20% может быть обусловлена сильным дисбалансом сопротивлений и напряжений фаз, но чаще — повреждениями в нагрузке, обрывом нагрузочных проводов или неверным подключением нагрузки. Поэтому срабатывание этой защиты вовремя проинформирует оператора о возникшей аварийной ситуации.

Важным аспектом, влияющим на надежность устройства, является тип используемых вентиляторов охлаждения и способ управления ими. Вентиляторы подразделяются:

  •  по скорости вращения на низко-, средне- и высокоскоростные;
  •  по типу подшипника — подшипник скольжения и подшипник качения.

Наилучший вариант — высокоскоростной вентилятор с подшипником качения. Такой вентилятор обеспечивает максимальную скорость воздушных потоков, проходящих через ребра радиатора охлаждения, а его подшипник качения обеспечивает длительный ресурс эксплуатации (в 2-3 раза выше чем подшипник скольжения).

Лучшим способом управления вентилятора нужно признать метод управления по датчику температуры, установленному на радиаторе; например, включение вентилятора производится при температуре радиатора 55 С, а отключение — при 45 С.

Такой способ увеличивает ресурс вентилятора в 1,5-2 раза, поскольку вентилятор отключается при невысокой температуре окружающей среды или малой нагрузке.

Совет

Другим важным компонентом, влияющим на надежность тиристорного регулятора, является токоограничивающий реактор, применение которого позволяет продлить срок службы тиристоров в 1,5-2,5 раза.

Реактор представляет собой катушку индуктивности, которая снижает скорость нарастания тока через тиристоры при их включении. Так же токоограничивающий реактор снижает уровень электромагнитных помех.

Чаще всего реактор не входит в стандартный комплект поставки; большинство производителей поставляет его как дополнительный аксессуар.

Лучшие модели тиристорных регуляторов мощности обладают возможностью работать в режиме ограничения или стабилизации тока. Назначение режима ограничения тока – не допустить превышения тока нагрузки сверх запрограммированной заранее величины.

При этом в память микропроцессора вводится значение максимального выходного тока; система управления корректирует управляющее воздействие на тиристоры таким образом, чтобы ток нагрузки не превысил значение этой уставки.

Использование этого режима позволяет точно ограничивать пусковые токи, избегая перегрузок и срабатывания защит. Так же ограничение выходного тока может быть полезно и по условиям технологического процесса.

Дальнейшим развитием этого режима является режим стабилизации тока, при котором ток стабилизируется на заданном уровне и поддерживается вне зависимости от изменения напряжения сети и сопротивления нагрузки.

Как правило, управление тиристорным регулятором может осуществляться местно (кнопками, тумблерами, переменным резистором с панели управления) или дистанционно с помощью стандартных аналоговых интерфейсов 0-10 В, 0-20 мА, 4-20 мА, совместимых с любыми промышленными контроллерами.

Обратите внимание

Некоторые производители тиристорных регуляторов по согласованию с заказчиками комплектуют свои устройства ПИД-регуляторами температуры, сигнал с выхода которого задает выходное напряжение тиристорного регулятора.

Это позволяет создать полноценную автоматическую систему управления температурой объекта с замкнутой обратной связью по температуре, для чего необходимо установить на объекте датчик температуры и подключить его к измерительному входу ПИД-регулятора.

С помощью ПИД-регулятора можно задать желаемую температуру, темп нагрева и охлаждения, настроить срабатывание аварийной сигнализации при выходе температуры из допустимого диапазона. Управление ПИД-регулятором осуществляется кнопками с панели управления или удаленно по интерфейсному кабелю с персонального компьютера.

В последнем случае становится возможным создание полноценной SCADA-системы с визуализацией технологического процесса и отображении на мнемосхеме контролируемых величин.

Источник: https://www.elec.ru/articles/o-sovremennyh-tiristornyh-regulyatorah/

Ссылка на основную публикацию