Электроёмкость конденсатора

Электроемкость. Конденсатор . Видеоурок. Физика 10 Класс

На этом уроке мы начнем изучение нового прибора – конденсатора – и новой физической величины – электроемкости. Исходя из опытов, мы рассмотрим количественную неодинаковость электризации разных тел одинаковыми зарядами, познакомимся с прибором для накопления зарядов и его основными характеристиками.

Тема: Основы электродинамики
Урок: Электроёмкость. Конденсаторы

На предыдущих уроках мы знакомились с элементарными электрическими понятиями и принципами, в частности, мы говорили об электризации – явлении перераспределения заряда. Разговор о более глубоком исследовании этого явления начнем с опыта.

Изначально пусть нам даны две разные по размеру изолированные банки, подключенные к электроскопу (рис. 1):

Рис. 1

Обратите внимание

Теперь к каждой из банок поднесли одинаково заряженное тело. Естественно, с каждой банкой произойдет процесс электризации, и стрелки обоих электроскопов разойдутся. Однако оказалось, что электроскоп большей банки показал меньшее отклонение (рис. 2):

Рис. 2

Данный опыт доказывает, что различные тела электризуются одним и тем же зарядом по-разному (конкретно большая банка одним и тем же зарядом зарядилась до меньшего потенциала). И существует некоторая величина, которая показывает способность тела накапливать электрический заряд. Собственно, о ней и пойдет речь.

Определение. Электроемкость (емкость) – величина, равная отношению заряда переданного проводнику к потенциалу этого проводника.

Здесь:  – емкость;  – переданный заряд;  – потенциал, до которого зарядился проводник.

Теперь непосредственно познакомимся со специализированными приборами для накопления зарядов.

Определение. Конденсатор – набор проводников, служащий для накопления электрического заряда. Конденсаторы состоят из двух проводников и разделяющего их диэлектрика, причем толщина диэлектрического слоя много меньше размеров проводников (рис. 3).

Рис. 3. Схематическое изображение конденсатора (Источник)

Особое внимание мы будем уделять так называемым плоским конденсаторам (слой диэлектрика расположен между двумя плоскими пластинами проводника). На электрической схеме конденсатор обозначается следующим образом (рис. 4): 

Рис. 4. Условное обозначение конденсатора на электрической схеме

Емкость конденсатора определяется так же, как и любая другая электроемкость, однако с небольшим отличием (так как речь идет о системе проводников, а не о отдельно взятом проводнике, в формуле фигурирует не потенциал, а разность потенциалов или напряжение)

Важно

Здесь:  – заряд на обкладках конденсатора (так называются проводники, из которых состоит конденсатор);  – напряжение между обкладками конденсатора.

Единица измерения емкости: Ф – фарад

Однако, конечно же, емкость конденсатора – не постоянная величина, она зависит от конструкторских особенностей самого конденсатора. В случае плоского конденсатора эта зависимость имеет следующий вид:

Здесь:  – диэлектрическая проницаемость среды;  – электрическая постоянная;  – площадь обкладки конденсатора;  – расстояние между обкладками.

В конденсаторах роль диэлектрической прослойки, как правило, выполняет пропитанная соответствующим составом бумага, расположенная между двумя тонкими листами металла (рис. 5).

Рис. 5. Устройство конденсатора (Источник) 

Конденсаторы можно разделить на три основных типа: 

Конденсатор постоянной емкости – это свернутая в рулон упомянутая выше трехслойная лента (две ленты проводника и лента диэлектрика между ними).

Конденсаторы переменной емкости – приборы, используемые в радиотехнике, позволяющие регулировать параметры, от которых зависит емкость – ширина пластин и расстояние между ними (рис. 6).

Батарея же конденсаторов – это несколько конденсаторов, связанных по определенной схеме. 

Рис. 6. Модель конденсатора переменной емкости (Источник)

Конденсатор – прибор для накопления заряда, и проводники, на которых накапливается заряд, создают между собой электрическое поле, а значит, конденсатор обладает некоторой энергией.  Энергия конденсатора, по закону сохранения энергии, должна быть равна работе, выполненной по разделению зарядов.

Как мы уже знаем, работа по перемещению заряда в поле равна:

Здесь:  – заряд;  – напряженность;  – модуль перемещения.

Совет

И теперь, если рассмотреть наш случай поля конденсатора, получается, что напряженность  создается одновременно двумя обкладками, и для рассмотрения одной обкладки мы должны записать

Рис. 7. Однородное поле конденсатора

Воспользовавшись теперь формулой связи напряженности и напряжения из прошлого урока:

Формула для энергии конденсатора принимает вид:

Использовав в этой формуле формулу определения емкости конденсатора, можно получить еще две формы записи для энергии:

или

Этот урок завершает тему электростатики. Следующий будет посвящен уже электрическому току.

Дополнение 1. Электроемкость шара.

Для того чтобы оценить насколько велика емкость в 1 Ф, возьмем в качестве накапливающего заряд тела проводящий шар и выведем зависимость его емкости от его размеров.

Из предыдущего урока мы знаем формулу для определения потенциала шара:

Подставим теперь её в определение емкости:

Давайте рассмотрим случай в вакууме или же в воздухе (). Каковы же должны быть размеры шара, чтобы его емкость равнялась 1 Ф?

Для сравнения радиус Земли равен:

Дополнение 2. Соединение конденсаторов.

Иногда не получается найти конденсатор нужной конфигурации, тогда приходится составлять блоки из нескольких конденсаторов. Соединить два или более конденсатора можно двумя различными способами: параллельно или последовательно.

Параллельное соединение (рис. 8):

Рис. 8. Параллельное соединение конденсаторов

Так как выходы источника питания подсоединены одновременно к обкладкам всех конденсаторов, то потенциалы всех обкладок равны, металл является эквипотенциальной поверхностью:

Заряды на обкладках параллельно соединенных конденсаторов суммируются:

Разделив второе равенство на напряжение (любое, так как они равны) и воспользовавшись определением емкости конденсатора, получим:

Последовательное соединение (рис. 9):

Рис. 9. Последовательное соединение конденсаторов

Так как две обкладки соседних конденсаторов являются одной деталью, отрезанной от остальных проводников, по закону сохранения заряда, сумма их зарядов должна оставаться равной нулю, а значит, они равны по модулю, но противоположны по знаку, поэтому:

Падение же напряжения на всем участке складывается из падений напряжения на каждом конденсаторе:

Теперь, разделив второе равенство на заряд (любой, так как они равны) и воспользовавшись определением емкости конденсатора, получим:

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. – М.: Дрофа, 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

Домашнее задание

  1. Стр. 96-98: № 750–755. Физика. Задачник. 10-11 классы. Рымкевич А.П. – М.: Дрофа, 2013. (Источник)
  2. Во сколько раз изменится емкость конденсатора, если листовую слюду заменить парафином той же толщины?
  3. Какую площадь должны иметь пластины плоского конденсатора, для того чтобы его электроемкость была равна 1 пФ? Расстояние между пластинами – 0,5 мм.
  4. Емкость одного конденсатора больше емкости другого в 4 раза, на какой конденсатор нужно подать большее напряжение, чтобы их энергии стали одинаковыми, во сколько раз больше?
  5. *Почему большой заряд не может удержаться на сфере маленького радиуса?

Источник: https://interneturok.ru/lesson/physics/10-klass/osnovy-elektrodinamiki-2/elektroemkost-kondensator-variant-1-eryutkin-e-s

Что такое электроемкость конденсатора? :: SYL.ru

Электроемкость конденсатора – это его способность накапливать электрический заряд. Формула электроемкости следующая.

C=q/U

Измеряется эта величина в фарадах. Как правило, емкость элемента очень мала и измеряется в пикофарадах.

В задачах часто спрашивается, как изменится электроемкость конденсатора, если увеличить заряд или напряжение. Это вопрос с подвохом. Проведем другую аналогию.

Представьте, что речь идет про обычную банку, а не конденсатор. Например, у вас она трехлитровая. Аналогичный вопрос: что произойдет со вместимостью банки, если туда налить 4 литра воды? Разумеется, вода просто выльется, но при этом размеры банки никак не изменятся.

То же самое с конденсаторами. Заряд и напряжение никак не влияют на емкость. Этот параметр зависит только от реальных физических размеров.

Формула будет следующей

Только эти параметры влияют на реальную электроемкость конденсатора.

На любом конденсаторе есть маркировка с техническими параметрами.

Разобраться несложно. Достаточно минимальных знаний по электричеству.

Соединение конденсаторов

Конденсаторы, так же как и сопротивления, можно подключать последовательно и параллельно. Кроме этого, в схемах бывают и смешанные соединения.

Как видите, электроемкость конденсатора в обоих случаях считается по-разному. Это также относится к напряжению и заряду. По формулам видно, что электроемкость конденсатора, вернее, их совокупности в схеме, будет наибольшей при параллельном соединении. При последовательном общая емкость значительно уменьшается.

При подключении последовательно заряд размещается равномерно. Он будет везде одинаков – как суммарный, так и на каждом конденсаторе. А когда соединение параллельное, суммарный заряд складывается. Это важно помнить при решении задач.

Обратите внимание

Напряжение считается наоборот. При последовательном соединении складываем, а при параллельном оно равно везде.

Здесь приходится выбирать: если вам нужно больше напряжения, тогда жертвуем емкостью. Если емкость, то огромного напряжения не будет.

Виды конденсаторов

Существует огромное количество конденсаторов. Они отличаются как по размеру, так и по форме.

Разумеется, емкость вычисляется у всех по-разному.

Электроемкость плоского конденсатора

Электроемкость плоского конденсатора определяется проще всего. Эту формулу в основном все и помнят, в отличии от других.

Здесь всё зависит от физических параметров и среды между пластинами.

Сферический конденсатор

Здесь также большое значение имеет, какой диэлектрик или материал помещен внутрь. Так как деталь имеет размер сферы, ее емкость зависит от радиуса.

Цилиндрический конденсатор

В случае с цилиндрической формой, кроме среды внутри, значение имеют радиусы и длина цилиндра.

Повреждения в конденсаторах

Подумайте, как изменится электроемкость плоского конденсатора, если на нем будут повреждения? Существуют различные сбои, которые могут повлиять на работоспособность конденсаторов.

Например, они рассыхаются или вздуваются. После этого они становятся непригодными для нормальной работы устройства, куда установлены.

Рассмотрим примеры повреждений и выхода из строя конденсаторов. Вздуться могут все сразу.

Иногда из строя выходят только несколько. Такое бывает, когда конденсаторы разных параметров или качества.

Наглядный пример порчи (вздутие, разрыв и выход наружу содержимого).

Если вы увидите вот такие ленты, это крайняя степень повреждения. Хуже и быть не может.

Если вы заметите на устройстве (например на видеокарте в компьютере) такие вздутые конденсаторы, это повод задуматься о замене детали.

Подобные проблемы можно устранить только заменой на аналогичную деталь. У вас должны совпадать все параметры один в один. Иначе работа может быть некорректной или очень кратковременной.

Важно

Менять конденсаторы нужно аккуратно, не повредив платы. Выпаивать нужно быстро, не допуская перегрева. Если вы не умеете этого делать, лучше отнесите деталь в ремонт.

Основной причиной разрушения является перегрев, который возникает в случае старения или большого сопротивления в цепи.

Рекомендуется не затягивать с ремонтом. Поскольку у поврежденных конденсаторов изменяется емкость, устройство, где они расположены, будет работать с отклонением от нормы. И со временем это может стать причиной выхода из строя.

Если у вас на видеокарте вздулись конденсаторы, то их своевременная замена может исправить ситуацию. В противном случае может сгореть микросхема или что-то еще. В таком случае ремонт будет стоить очень дорого или вовсе окажется невозможным.

Читайте также:  Какой отпариватель лучше

Меры предосторожности

Выше был приведен пример с банкой воды. Там говорилось, что если воды налить больше, то воды выльется. А теперь подумайте, куда могут “вылиться” электроны в конденсаторе? Ведь он запечатан полностью!

Если вы подадите в цепи больше тока, чем тот, на который рассчитан конденсатор, то как только он зарядится, его излишек попытается выйти куда-то. А пространства свободного нет. Результатом будет взрыв. В случае незначительного превышения заряда хлопок будет небольшой. Но если подать колоссальное количество электронов на конденсатор, его просто разорвет, и диэлектрик вытечет.

Будьте аккуратны!

Источник: https://www.syl.ru/article/260768/new_chto-takoe-elektroemkost-kondensatora

Электроемкость. Единицы электроемкости. Конденсаторы – Класс!ная физика

«Физика – 10 класс»

При каком условии можно накопить на проводниках большой электрический заряд?

При любом способе электризации тел – с помощью трения, электростатической машины, гальванического элемента и т. д. – первоначально нейтральные тела заряжаются вследствие того, что некоторая часть заряженных частиц переходит от одного тела к другому.
Обычно этими частицами являются электроны.

При электризации двух проводников, например от электростатической машины, один из них приобретает заряд +q, а другой -q. Между проводниками появляется электрическое поле и возникает разность потенциалов (напряжение).

С увеличением заряда проводников электрическое поле между ними усиливается.

В сильном электрическом поле (при большом напряжении и соответственно при большой напряженности) диэлектрик (например, воздух) становится проводящим.
Возможен так называемый пробой диэлектрика: между проводниками проскакивает искра, и они разряжаются.
Чем меньше увеличивается напряжение между проводниками с увеличением их зарядов, тем больший заряд можно на них накопить.

Электроемкость.

Введем физическую величину, характеризующую способность двух проводников накапливать электрический заряд.
Эту величину называют электроемкостью.

Напряжение U между двумя проводниками пропорционально электрическим зарядам, которые находятся на проводниках (на одном +|q|, а на другом -|q|).
Действительно, если заряды удвоить, то напряженность электрического поля станет в 2 раза больше, следовательно, в 2 раза увеличится и работа, совершаемая полем при перемещении заряда, т. е. в 2 раза увеличится напряжение.

Поэтому отношение заряда q одного из проводников (на другом находится такой же по модулю заряд) к разности потенциалов между этим проводником и соседним не зависит от заряда.

Оно определяется геометрическими размерами проводников, их формой и взаимным расположением, а также электрическими свойствами окружающей среды.

Это позволяет ввести понятие электроемкости двух проводников.

Электроемкостью двух проводников называют отношение заряда одного из проводников к разности потенциалов между ними:

Совет

Электроёмкость уединённого проводника равна отношению заряда проводника к его потенциалу, если все другие проводники бесконечно удалены и потенциал бесконечно удалённой точки равен нулю.

Чем меньше напряжение U между проводниками при сообщении им зарядов +|q| и -|q|, тем больше электроемкость проводников.

На проводниках можно накопить большие заряды, не вызывая пробоя диэлектрика.
Но сама электроемкость не зависит ни от сообщенных проводникам зарядов, ни от возникающего между ними напряжения.

Единицы электроемкости.

Формула (14.22) позволяет ввести единицу электроемкости.

Электроемкость двух проводников численно равна единице, если при сообщении им зарядов +1 Кли -1 Клмежду ними возникает разность потенциалов 1 В.

Эту единицу называют фарад (Ф); 1 Ф = 1 Кл/В.

Из-за того что заряд в 1 Кл очень велик, емкость 1 Ф оказывается очень большой.
Поэтому на практике часто используют доли этой единицы: микрофарад (мкФ) – 10-6 Ф и пикофарад (пФ) – 10-12 Ф.

Важная характеристика проводников – электроемкость.
Электроемкость проводников тем больше, чем меньше разность потенциалов между ними при сообщении им зарядов противоположных знаков.

Конденсаторы.

Систему проводников очень большой электроемкости вы можете обнаружить в любом радиоприемнике или купить в магазине. Называется она конденсатором. Сейчас вы узнаете, как устроены подобные системы и от чего зависит их электроемкость.

Большой электроемкостью обладают системы из двух проводников, называемые конденсаторами. Конденсатор представляет собой два проводника, разделенные слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Проводники в этом случае называются обкладками конденсатора.

Простейший плоский конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга (рис.14.33).

Если заряды пластин одинаковы по модулю и противоположны по знаку, то силовые линии электрического поля начинаются на положительно заряженной обкладке конденсатора и оканчиваются на отрицательно заряженной (рис.14.28). Поэтому почти все электрическое поле сосредоточено внутри конденсатора и однородно.

Для зарядки конденсатора нужно присоединить его обкладки к полюсам источника напряжения, например к полюсам батареи аккумуляторов. Можно также первую обкладку соединить с полюсом батареи, у которой другой полюс заземлен, а вторую обкладку конденсатора заземлить.

Обратите внимание

Тогда на заземленной обкладке останется заряд, противоположный по знаку и равный по модулю заряду незаземленной обкладки. Такой же по модулю заряд уйдет в землю.

Под зарядом конденсатора понимают абсолютное значение заряда одной из обкладок.

Электроемкость конденсатора определяется формулой (14.22).

Электрические поля окружающих тел почти не проникают внутрь конденсатора и не влияют на разность потенциалов между его обкладками. Поэтому электроемкость конденсатора практически не зависит от наличия вблизи него каких-либо других тел.

Электроемкость плоского конденсатора.

Геометрия плоского конденсатора полностью определяется площадью S его пластин и расстоянием d между ними. От этих величин и должна зависеть емкость плоского конденсатора.

Чем больше площадь пластин, тем больший заряд можно на них накопить: q~S. С другой стороны, напряжение между пластинами согласно формуле (14.21) пропорционально расстоянию d между ними.

Поэтому емкость

Кроме того, емкость конденсатора зависит от свойств диэлектрика между пластинами. Так как диэлектрик ослабляет поле, то электроемкость при наличии диэлектрика увеличивается.

Проверим на опыте зависимости, полученные нами из рассуждений. Для этого возьмем конденсатор, у которого расстояние между пластинами можно изменять, и электрометр с заземленным корпусом (рис.14.34). Соединим корпус и стержень электрометра с пластинами конденсатора проводниками и зарядим конденсатор.

Для этого нужно коснуться наэлектризованной палочкой пластины конденсатора, соединенной со стержнем. Электрометр покажет разность потенциалов между пластинами.

Важно

Раздвигая пластины, мы обнаружим увеличение разности потенциалов. Согласно определению электроемкости (см. формулу (14.22)) это указывает на ее уменьшение.

В соответствии с зависимостью (14.23) электроемкость действительно должна уменьшаться с увеличением расстояния между пластинами.

Вставив между обкладками конденсатора пластину из диэлектрика, например из органического стекла, мы обнаружим уменьшение разности потенциалов.

Следовательно, электроемкость плоского конденсатора в этом случае увеличивается. Расстояние между пластинами d может быть очень малым, а площадь S – большой. Поэтому при небольших размерах конденсатор может иметь большую электроемкость.

Для сравнения: в отсутствие диэлектрика между обкладками плоского конденсатора при электроемкости в 1 Ф и расстоянии между пластинами d = 1 мм он должен был бы иметь площадь пластин S = 100 км2.

Кроме того, ёмкость конденсатора зависит от свойств диэлектрика между пластинами. Так как диэлектрик ослабляет поле, то электроёмкость при наличии диэлектрика увеличивается: где ε — диэлектрическая проницаемость диэлектрика.

Последовательное и параллельное соединения конденсаторов. На практике конденсаторы часто соединяют различными способами. На рисунке 14.40 представлено последовательное соединение трёх конденсаторов.

Если точки 1 и 2 подключить к источнику напряжения, то на левую пластину конденсатора С1 перейдёт заряд +qy на правую пластину конденсатора СЗ — заряд -q.

Вследствие электростатической индукции правая пластина конденсатора С1 будет иметь заряд -q, а так как пластины конденсаторов С1 и С2 соединены и до подключения напряжения были электро нейтральны, то по закону сохранения заряда на левой пластине конденсатора С2 появится заряд +q и т. д.

На всех пластинах конденсаторов при таком соединении будет одинаковый по модулю заряд:

q = q1 = q2 = q3.

Совет

Определить эквивалентную электроёмкость — это значит определить электроёмкость такого конденсатора, который при той же разности потенциалов будет накапливать тот же заряд q, что и система конденсаторов.

Разность потенциалов φ1 – φ2 складывается из суммы разностей потенциалов между пластинами каждого из конденсаторов:

φ1 – φ2 = (φ1 – φA) + (φA – φB) + (φB – φ2),
или U = U1 + U2 + U3.

Воспользовавшись формулой (14.23), запишем:

На рисунке 14.

41 представлена схема параллельно соединённых конденсаторов. Разность потенциалов между пластинами всех конденсаторов одинакова и равна:

φ1 — φ2 = U = U1 = U2 = U3.

Заряды на пластинах конденсаторов

q1 = C1U, q2 = C2U, q3 = C3U.

На эквивалентном конденсаторе ёмкостью Сэкв заряд на пластинах при той же разности потенциалов

q = q1 + q2 + q3.

Для электроёмкости, согласно формуле (14.

23) запишем: CэквU = C1U + C2U + C3U, следовательно, Сэкв = C1+ С2 + С3, и в общем случае

Различные типы конденсаторов.

В зависимости от назначения конденсаторы имеют различное устройство. Обычный технический бумажный конденсатор состоит из двух полосок алюминиевой фольги, изолированных друг от друга и от металлического корпуса бумажными лентами, пропитанными парафином. Полоски и ленты туго свернуты в пакет небольшого размера.

В радиотехнике широко применяют конденсаторы переменной электроемкости (рис.14.35). Такой конденсатор состоит из двух систем металлических пластин, которые при вращении рукоятки могут входить одна в другую. При этом меняются площади перекрывающихся частей пластин и, следовательно, их электроемкость.

Диэлектриком в таких конденсаторах служит воздух.

Значительного увеличения электроемкости за счет уменьшения расстояния между обкладками достигают в так называемых электролитических конденсаторах (рис.14.36). Диэлектриком в них служит очень тонкая пленка оксидов, покрывающих одну из обкладок (полосу фольги).

Обратите внимание

Другой обкладкой служит бумага, пропитанная раствором специального вещества (электролита).

Конденсаторы позволяют накапливать электрический заряд. Электроемкость плоского конденсатора пропорциональна площади пластин и обратно пропорциональна расстоянию между пластинами.

Кроме того, она зависит от свойств диэлектрика между обкладками.

Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Назад в раздел «Физика – 10 класс, учебник Мякишев, Буховцев, Сотский»

Электростатика – Физика, учебник для 10 класса – Класс!ная физика

Что такое электродинамика — Электрический заряд и элементарные частицы. Закон сохранения заряд — Закон Кулона. Единица электрического заряда — Примеры решения задач по теме «Закон Кулона» — Близкодействие и действие на расстоянии — Электрическое поле — Напряжённость электрического поля. Силовые линии — Поле точечного заряда и заряженного шара. Принцип суперпозиции полей — Примеры решения задач по теме «Напряжённость электрического поля. Принцип суперпозиции полей» — Проводники в электростатическом поле — Диэлектрики в электростатическом поле — Потенциальная энергия заряженного тела в однородном электростатическом поле — Потенциал электростатического поля и разность потенциалов — Связь между напряжённостью электростатического поля и разностью потенциалов. Эквипотенциальные поверхности — Примеры решения задач по теме «Потенциальная энергия электростатического поля. Разность потенциалов» — Электроёмкость. Единицы электроёмкости. Конденсатор — Энергия заряженного конденсатора. Применение конденсаторов — Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»

Читайте также:  Потребляемая мощность обогревателя

Источник: http://class-fizika.ru/10_a180.html

Конденсаторы.Электроемкость конденсатора. Применение конденсаторов

План ответа

1. Определение конденсатора. 2. Обозначение. 3. Электроемкость конденсатора. 4. Электроемкость плоского конденсатора. 5. Соединение конденсаторов. 6. Применение конденсаторов.

Для накопления значительных количеств раз­ноименных электрических зарядов применяются конденсаторы.Конденсатор — это система двух про­водников (обкладок), разделенных слоем диэлектри­ка, толщина которого мала по сравнению с размера­ми проводников.

Так, например, две плоские метал­лические пластины, расположенные параллельно и разделенные диэлектриком, образуют плоский кон­денсатор.

Если пластинам плоского конденсатора со­общить равные по модулю заряды противоположного знака, то напряженность между пластинами будет в два раза больше, чем напряженность одной пласти­ны. Вне пластин напряженность равна нулю.

Обозначаются конденсаторы на схемах так: — конденсатор постоянной емкости и

— конденсатор переменной емкости.

Электроемкостью конденсатора называют ве­личину, равную отношению величины заряда одной из пластин к напряжению между ними. Электроем­кость обозначается С.

По определению С =q/U. Единицей электро­емкости является фарад (Ф). 1 фарад — это электроемкость такого конденсатора, напряжение между об­кладками которого равно 1 вольту при сообщении обкладкам разноименных зарядов по 1 кулону.

Электроемкость плоского конденсатора нахо­дится по формуле:

С=εε0•S/d

где ε0— электрическая постоянная, ε — диэлектри­ческая постоянная среды, S — площадь обкладки конденсатора, d — расстояние между обкладками (или толщина диэлектрика).

Если конденсаторы соединяются в батарею, то при параллельном соединении С0 =С1 + С2, (рис.).

При последовательном соединении 1/C0= 1/C1 + 1/С2 (рис.).

Важно

В зависимости от типа диэлектрика конденса­торы бывают воздушные, бумажные, слюдяные.

Конденсаторы применяются для накопления электроэнергии и использования ее при быстром раз­ряде (фотовспышка), для разделения цепей постоян­ного и переменного токов, в выпрямителях, колеба­тельных контурах и других радиоэлектронных уст­ройствах.

Билет № 14

Силы и энергия межмолекулярного взаимодействия. Строение газообразных, жидких и твёрдых тел. Опыт Штерна.

Межмолекулярные силысилы взаимодействия между молекулами. Имеют электрическую природу, взаимодействие положительных и отрицательных зарядов.

F

Силы отталкивания

0 do r

Сила молекулярного взаимодействия

Силы притяжения

График зависимости межмолекулярных сил от расстояния между молекулами

· do- поперечник молекулы, r- расстояние между центрами молекул.

· Если r = do, сила отталкивания равна силе притяжения. Сила взаимодействия молекул равна нулю.

· Если rdo сила отталкивания меньше силы притяжения. Молекулы притягиваются друг другу.

Энергия молекул.

Молекулы находятся в состоянии хаотического движения, молекулы взаимодействуют друг с другом, следовательно, они обладают кинетической и потенциальной энергией: .

· В газообразном состоянии потенциальная энергия взаимодействия молекул пренебрежимо мала по сравнению с кинетической. Поэтому газы не имеют постоянной формы и объема, заполняют весь предоставленный им объем.

· В жидкостях величина потенциальной энергии приблизительно равна кинетической энергии. Поэтому в жидкости молекулы могут скачкообразно перемещаться относительно друг друга. Время “оседлой” жизни 10-8c. C ростом температуры это время уменьшается. Жидкость имеет свойство текучести: сохраняя объем легко меняет форму, принимая форму сосуда.

В твердых телах величина потенциальной энергии взаимодействия молекул значительно больше кинетической энергии. Поэтому в твердых телах молекулы не могут свободно перемещаться, образуют кристаллическую решетку. Твердые тела сохраняют форму и объем. В кристаллической решетке молекулы обладают наименьшей потенциальной энергией .

Опыт Штерна

О. Штерн, воспользовавшись методом молекулярных пучков, изобретенным французским физиком Луи Дюнойе (1911г.) измерил скорость газовых молекул и на опыте подтвердил полученное Д. К. Максвеллом распределение молекул газа по скоростям. Результаты опыта Штерна подтвердили правильность оценки средней скорости атомов, которая вытекает из распределения Максвелла.

По графику можно было определить смещение для середины изображения щели и, соответственно, вычислить среднюю скорость движения атомов.

При Т2

Источник: https://cyberpedia.su/6xa6bc.html

Электроемкость конденсатора, теория и примеры

Одним их важнейших параметров, при помощи которого характеризуют конденсатор, является его электроёмкость (C). Физическая величина C, равная:

называется емкостью конденсатора. Где q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками. Электроемкость конденсатора — это величина, которая зависит то размеров и устройства конденсатора.

Для конденсаторов с одинаковым устройством и при равных зарядах на его обкладках разность потенциалов воздушного конденсатора будет в раз меньше, чем разность потенциалов между обкладками конденсатора, пространство которого между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Значит емкость конденсатора с диэлектриком (C) в раз больше, чем электроемкость воздушного конденсатора ():

Совет

где – диэлектрическая проницаемость диэлектрика.

Единицей емкости конденсатора считают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) является фарад (Ф).

Электроемкость плоского конденсатора

Поле между обкладками плоского конденсатора в большинстве случаев считают однородным. Однородность нарушается только около краев. При расчете емкости плоского конденсатора данными краевыми эффектами обычно пренебрегают. Это возможно, если расстояние между пластинами мало в сравнении с их линейными размерами. В таком случае емкость плоского конденсатора вычисляют как:

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

Электрическая емкость цилиндрического конденсатора

Конструкция цилиндрического конденсатора включает две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость такого конденсатора находят как:

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

где – радиусы обкладок конденсатора.

Примеры решения задач

Понравился сайт? Расскажи друзьям!

Источник: http://ru.solverbook.com/spravochnik/fizika/elektroemkost-kondensatora/

Электроёмкость. Конденсаторы

Изучение электрических явлений вы начали еще в восьмом классе, познакомившись с явлением электризации. Сегодня мы можем провести классический опыт. Возьмем две стеклянные банки разных размеров, предварительно изолировав их от земли. Поднесем к каждой из этих банок одинаковый заряженный шар на изолированной ручке.

Если теперь мы измерим потенциалы каждой из банок, с помощью электрометров, то убедимся, что эти потенциалы не равны. Это наводит на мысли о том, что на различных телах накопление заряда происходит по-разному. Другой опыт, который мы можем провести — это разноименно зарядить два проводника.

Как вы понимаете, с увеличением заряда, будет расти напряженность электрического поля между данными проводниками. При неизменном расстоянии между проводниками, с увеличением напряженности будет расти и разность потенциалов, то есть, электрическое напряжение.

При достаточно большом напряжении, диэлектрик становится проводящим (поскольку не существует идеальных диэлектриков). Возникает явление, которое называется пробоем диэлектрика: между проводниками проскакивает искра, в результате чего они разряжаются.

Это говорит нам о том, что чем меньше увеличивается напряжение с увеличением заряда, тем больший заряд можно накопить. Таким образом, мы можем заключить, что необходимо ввести физическую величину, которая характеризует способность накапливать электрический заряд.

Эта величина называется электроемкостью или просто емкостью.

Поскольку напряжение между двумя проводниками пропорционально напряженности электрического поля, а напряженность, в свою очередь, пропорциональна зарядам на проводниках, можно сделать вывод, что напряжение пропорционально зарядам на проводниках:

Как мы уже сказали, чем меньше увеличивается напряжение с увеличением заряда, тем больший заряд можно накопить. Поэтому, определение электроемкости для двух проводников звучит так: электроемкость двух проводников — это отношение заряда одного из проводников к разности потенциалов между ними:

Единицей измерения электроемкости является фарад (в честь Майкла Фарадея):

Как видно из формулы электроемкость двух проводников равна 1 Ф, если при сообщении им зарядов 1 Кл и –1 Кл, между ними возникает напряжение в 1 В.

Обратите внимание

Как мы уже говорили, заряд в 1 Кл — это очень большой заряд, поэтому, электроемкость в 1 Ф — тоже очень большая. На практике используются такие величины, как микрофарады и нанофарады.

Итак, мы дали определение электроемкости для двух проводников. Система проводников, используемых для накопления электрического заряда, называется конденсатором. Конденсатор состоит из двух проводников, которые разделены слоем диэлектрика.

Толщина диэлектрика должна быть невелика по сравнению с размерами проводников. Проводники в конденсаторе называются обкладками. В качестве обкладок часто используют очень тонкие металлические пластины, а в качестве диэлектрика — бумагу или воздух.

На сегодняшнем уроке мы рассмотрим плоский конденсатор. Плоский конденсатор состоит из двух параллельных пластин, находящихся на малом расстоянии друг от друга.

Поле внутри такого конденсатора будет однородным. Для того, чтобы зарядить конденсатор, достаточно подключить его к полюсам источника тока. Накопив заряд, конденсатор может сам являться источником тока некоторое время. Но, надо сказать, что конденсатор разряжается очень быстро. Электроемкость плоского конденсатора характеризуется площадью пластин и расстоянием между этими пластинами:

Очевидно, что чем больше площадь пластин, тем больший заряд можно на них накопить. Тем не менее, чем больше расстояние между пластинами, тем выше напряжение между ними:

Поскольку электроемкость обратно пропорциональна напряжению, мы можем заключить, что чем больше расстояние между пластинами, тем меньше электроемкость плоского конденсатора:

Таким образом, мы выяснили, что электроемкость плоского конденсатора прямо пропорциональна площади пластин и обратно пропорциональна расстоянию между ними:

Конечно же, электроемкость зависит и от диэлектрика, который используется в конденсаторе, поэтому в формуле мы видим диэлектрическую проницаемость. Также, в формуле есть коэффициент пропорциональности, который называется электрической постоянной. Значение электрической постоянной соответствует диэлектрической проницаемости вакуума:

Важно

Конденсаторы классифицируются по нескольким признакам: по форме обкладок, по типу диэлектрика и по назначению.

В основном конденсаторы бывают трех форм: плоские, сферические и цилиндрические.

Также конденсаторы разделяют по типу диэлектрика на керамические, бумажные и электролитические конденсаторы.

Кроме этого, конденсаторы классифицируются по назначению.

Помимо конденсаторов с постоянной электроемкостью, существуют также конденсаторы, которые обладают переменной электроемкостью. В таком конденсаторе есть статор и ротор.

Вращая ротор, можно изменять суммарную площадь перекрываемую пластинами и, таким образом, изменять электроемкость. Конденсаторы с переменной емкостью широко используются в радиотехнике.

Например, изменяя емкость конденсатора, можно настраивать радиоприемник на нужную частоту (или, как мы говорим, на нужную волну).

Кроме этого, на практике нередко используются конденсаторные батареи. Конденсаторная батарея представляет собой набор из нескольких конденсаторов постоянной емкости, соединенных между собой параллельно или последовательно. В зависимости от соединения, между параметрами конденсатора наблюдаются различные закономерности, которые сведены в таблицу:

Пример решения задачи.

Задача. Когда конденсатор с постоянной электроёмкостью зарядили от источника тока, напряжение между пластинами конденсатора составило 300 В. После этого, к конденсатору подключили лампочку, которая прогорела ровно 1,5 с, а потом погасла. Предполагая, что в течение этих полутора секунд, по лампочке проходил постоянный ток в 20 мА, определите электроёмкость данного конденсатора.

Источник: https://videouroki.net/video/67-eliektroiomkost-kondiensatory.html

Конденсатор (Электроемкость)

В статье мы расскажем про электроемкость, емкость конденсатора, про последовательное и параллельное соединение конденсаторов, а также как использовать закон Гаусса для расчета емкости конденсаторов с примерами и решениями.

Конденсатор (Электроемкость) –элемент, способный накапливать электромагнитную энергию в собственном электрическом поле, образуемом обкладками конденсатора. Обозначается – С. Напряжение и ток на его контактах связано зависимостью:

Величина ёмкости измеряется в фарадах (Ф).

1 фарада – это величина такой ёмкости, на которой имеет место падение напряжения 1 вольт при наличии заряда в ёмкости 1 кулон.

1 фарада – очень большая величина, поэтому применяемые в технике конденсаторы имеют величины: — пикофарад – 10-12; нанофарад – 10-9; микрофарад – 10-6.

Процессы, происходящие в конденсаторе на временном графике при подключении конденсатора к источнику прямоугольного однополярного сигнала, показаны на рисунке.

Из рисунка видно, что в момент подачи прямоугольного импульса источника тока (красный), напряжение на выводах конденсатора (фиолетовый) сначала равно нулю и с изменением времени увеличивается по экспоненте – конденсатор заряжается, а ток конденсатора (зелёный) наоборот сначала максимален, но потом по мере заряда уменьшается по экспоненте. При пропадании импульса, напряжение на выводах конденсатора уменьшается по экспоненте – конденсатор разряжается, а ток, изменивший полярность сначала максимален, и по мере разряда уменьшается из отрицательной области до нуля. Скорость изменения напряжения и тока зависит от значения ёмкости. Чем больше ёмкость, тем медленнее они изменяются (экспонента более вытянута по времени). Напряжение и ток на нагрузочном резисторе ведут себя одинаково, и изображены на временном графике оранжевым цветом. Их взаимосвязь описывается законом Ома.

Фактически, мы рассмотрели «четырёхполюсник» состоящий из конденсатора и резистора, который называют дифференцирующей цепочкой.

Дифференцирующая цепочка применяется для преобразования прямоугольных импульсов большой длительности в прямоугольные импульсы малой длительности. Чтобы, Вам было понятнее, дифференцирующая цепочка и преобразование импульса изображены на следующем рисунке.

Вслед за дифференцирующей цепочкой устанавливается пороговое устройство, не пропускающее через себя всё, что ниже по амплитуде установленного порога, с выхода порогового устройства, срезанные импульсы поступают на усилитель-ограничитель, который усиливает «кривой» импульс и ограничивая его амплитуду «сверху» пропускает его на выход.

Кроме функции преобразования прямоугольных импульсов, дифференцирующая цепочка может применяться в качестве фильтра высоких частот (ФВЧ). Конденсатор – инертный элемент.

Совет

Если к конденсатору с большой ёмкостью приложить переменное напряжение низкой частоты, в силу своей инертности, ёмкость будет не способной пропустить через себя ток, ведь конденсатору сначала надо будет зарядиться, а потом отдавать заряд.

Свойство конденсатора сопротивляться переменному электрическому току называют реактивным сопротивлением конденсатора, которое используется при конструировании частотных фильтров и колебательных контуров.

Реактивное сопротивление конденсатора обозначается Xc или Zc и измеряется в Омах. Реактивное сопротивление конденсатора связано с собственной ёмкостью и частотой тока выражением:

Из формулы видно, что реактивное сопротивление конденсатора обратно пропорционально частоте. Другими словами, чем выше частота, тем меньше реактивное сопротивление конденсатора.

Теперь представьте, что дифференцирующая цепь, это – описанный на сайте делитель напряжения, где вместо первого резистора выступает конденсатор.

А мы из формулы теперь знаем, что конденсатор легко пропускает высокие частоты – его сопротивление минимально и плохо пропускает низкие частоты – его сопротивление максимально.

В радиоэлектронике, когда рассчитывают частотные фильтры, то считают характеристикой фильтра – частоту среза, которая определяется как значение частоты сигнала, на котором амплитуда выходного сигнала уменьшается (затухает) до значения 0,7 от входного сигнала. Чтобы было понятнее, изображу это на рисунке.

То, что изображено, называется амплитудно-частотной характеристикой, или сокращённо — АЧХ. Для фильтра высоких частот соответствует АЧХ фиолетового цвета, и частота среза равная значению f2.

Обратите внимание

Зная, как рассчитывается делитель напряжения и реактивное сопротивление конденсатора на определённой частоте, Вы элементарно можете рассчитать простейший г-образный фильтр высокой частоты на конденсаторе и резисторе.

Если в дифференцирующей цепочке поменять местами конденсатор и резистор, то мы получим – интегрирующую цепочку. Все процессы в интегрирующей цепочке происходят точно так же, как и в дифференцирующей.

Временные графики, показанные на первом рисунке абсолютно справедливы для интегрирующей цепочки. Отличие заключается в том, что выходным элементом является не резистор, а конденсатор.

Поэтому, на выходе интегрирующей цепи будут не остроконечные дифференцированные импульсы (зелёного цвета), а импульсы напряжения, которое присутствует на выводах конденсатора (фиолетового цвета).

Ну а если дифференцирующая цепочка – это фильтр высоких частот, то интегрирующая цепочка – это фильтр низких частот (ФНЧ). И рассчитывается он так же, через делитель напряжения. Для фильтра низких частот соответствует АЧХ на рисунке — оранжевого цвета, и частота среза равная значению f1.

Cледует добавить, частотные фильтры, выполненные на конденсаторах и резисторах имеют пологую амплитудно-частотную характеристику. Другими словами у таких фильтров слабо выражен частотный срез. Более качественный срез имеют фильтры состоящие из конденсаторов и катушек индуктивности (дросселей), но об этом позже, когда изучим катушку индуктивности.

Емкость конденсатора

Как мы уже видели, изолированный проводник может накапливать электрический заряд. Однако на практике мы используем устройства, называемые конденсаторами, для хранения нагрузки.

 Конденсатор представляет собой систему из двух произвольно изолированных проводников, зарядка конденсатора состоит не в отдельной зарядке каждого из проводников, а в переносе заряда (одинакового на обоих проводниках, но с противоположными знаками) от одного проводника к другому.

Мы определяем электрическую емкость C конденсатора точно так же, как емкость изолированного проводника.

Конденсаторы очень часто используются в технике. Они обычно строятся как система из двух поверхностей с разной изолированной поверхностью, которые обычно располагаются параллельно друг другу.

 Как будет видно далее, емкость такого конденсатора пропорциональна размеру поверхности пластин и обратно пропорциональна расстоянию между ними. Таким образом, конденсатор большой емкости имеет большие поверхностные панели, которые расположены как можно ближе друг к другу.

Важно

 Простейшим таким конденсатором является плоский конденсатор, схематически показанный на рисунке ниже.

Пример двух конденсаторов, соединенных вместе, как показано на рисунке ниже (параллельно), может служить иллюстрацией постоянства заряда на крышках конденсаторов, не подключенных к источнику напряжения. Первоначально система нагрузки , которая охватывает один конденсатор заряда Q1 и на крышке второго заряда Q2.

Потенциал, на котором расположены верхние крышки, одинаков для обоих (крышки связаны с лампочкой). Когда мы начнем изменять расстояния между крышками одного из конденсаторов, то мы изменим его емкость — чем меньше зазор между крышками, тем больше емкость конденсатора.

 Поскольку общий заряд обоих конденсаторов неизменен, это изменение емкости вызовет перенос заряда между конденсаторами. Если конденсаторы заряжены достаточно большим зарядом, лампочка может светиться во время потока между крышками, образующими верхнюю пару.

 Энергия, необходимая для освещения лампы, исходит от работы, которую мы выполняем при перемещении крышки (верхняя и нижняя крышки заряжены противоположными знаками и поэтому притягиваются).

Схемы соединения конденсаторов

Существует множество различных схем соединения конденсаторов: последовательное подключение, параллельное, мостовое. И меняется абсолютно все показатели (Емкость, разность потенциалов, общая нагрузка) при различных видах подключения

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов, как показано на рисунке ниже, значения зарядов на всех крышках всех конденсаторов одинаковы.

Разность потенциала в последовательной цепи конденсаторов равно сумме разностей потенциалов на отдельных конденсаторах:

Следовательно, совокупная емкость С последовательной системы определяется по формуле

В параллельном соединении конденсаторов

общая нагрузка Q, накопленная в системе, равна сумме зарядов на крышках всех конденсаторов.

Уменьшение потенциала одинаково на каждом из конденсаторов и, следовательно,

Следовательно, общая емкость C параллельной системы равна сумме емкостей всех конденсаторов.

Последовательные и параллельные соединения не исчерпывают всех возможных конфигураций, которые могут быть получены при подключении конденсаторов. Мы сможем описать все возможные конфигурации только после завершения предыдущих соединений с мостовым соединением, схема которых показана на левом рисунке ниже.

Мы не можем напрямую заменить мостовые комбинации любой комбинацией последовательных и параллельных соединений. Чтобы рассчитать запасную емкость системы моста, используйте изменение треугольника конденсатора на эквивалентную звезду, как показано на среднем и правом рисунках выше.

Совет

Емкости между точками 1-2, 2-3 и 3-1, которые мы обозначаем как C 12, C23 и C31, должны быть одинаковыми в обеих конфигурациях. На основе значений емкости C1, C2 и C3 рассчитывают Cx, Cy и Cz. Условия равной емкости в обеих конфигурациях, для треугольника и для звезды, запишем как

Отсюда мы получаем искомые значения Cx, Cy и Cz:

После замены треугольника на звезду мостовое соединение исчезает, и на его месте мы получаем простую и удобную для вычисления комбинацию последовательных и параллельных конденсаторов.

Имея емкость конденсатора с заданной геометрией для расчета, мы используем следующую схему:

Мы исходим из определения емкости конденсатора. Вставьте разность потенциалов Vab в формулу, определяющую эту емкость. Нагрузка Q уменьшается.

но нам не хватает разности потенциалов Vab, которую мы находим из соотношения между полями E и V,

3. Однако сначала мы должны знать E, и для этого мы будем использовать универсальный инструмент, который является законом Гаусса:

Закон Гаусса выполняется для каждой замкнутой поверхности А. Однако такую ​​поверхность следует выбирать так, чтобы интегрирование было как можно более простым.

 В примерах, представленных ниже, форма предложенной поверхности Гаусса для обсуждаемых случаев обозначена контуром, нарисованным пунктирной кривой.

 Расчеты выполнены в соответствии с представленной схемой и не содержат дополнительных пояснений. ε0 — электрическая проницаемость вакуума.

Плоский конденсатор

Отсюда мы получаем емкость для плоского конденсатора

Цилиндрический конденсатор

Отсюда мы получаем емкость для цилиндрического конденсатора:

Сферический конденсатор

Отсюда мы получаем емкость для сферического конденсатора:

Цель представленных примеров — показать, как схема расчета работает на практике. Вы должны помнить только образец для емкости плоского конденсатора, который часто будет использоваться в дальнейшем вашем обучении.

Энергия заряженного конденсатора

Энергия заряженного конденсатора U равна той работе, которую мы будем выполнять при зарядке. Вся энергия U содержится в электрическом поле между крышками конденсатора.

При зарядке конденсатора разность потенциалов между его крышками V (q) зависит от заряда q, который в настоящее время находится на крышках. Работа по переносу между крышками дополнительной нагрузки составляет

Энергия поля в конденсаторе, полностью заряженном зарядом Q, становится

или

Плотность энергии электрического поля u будет рассчитываться путем деления энергии U на объем, занимаемый полем. Используя простую геометрию плоского конденсатора с площадью крышки A и расстояние между крышками d, мы находим значение u, действительное для поля E любой геометрии:

Источник: https://meanders.ru/kondensator.shtml

Ссылка на основную публикацию
Adblock
detector