Постоянный ток

Постоянный ток

Постоянный ток (direct current) – это упорядоченное движение заряженных частиц в одном направлении. Другими словами
величины характеризующие электрический ток, такие как напряжение или сила тока, постоянны как по значению, так и по направлению.

В источнике постоянного тока, например в обычной пальчиковой батарейке, электроны движутся от минуса к плюсу. Но исторически сложилось так, что за техническое направление тока считается направление от плюса к минусу.

Для постоянного тока применимы все основные законы электротехники, такие как закон Ома и законы Кирхгофа.

История

Изначально постоянный ток назывался – гальваническим током, так как впервые был получен с помощью гальванической реакции. Затем, в конце девятнадцатого века, Томас Эдисон, предпринимал попытки организовать передачу постоянного тока по линиям электропередачи.

При этом даже разыгралась так называемая “война токов”, в которой шел выбор в качестве основного тока между переменным и постоянным. К сожалению, постоянный ток “проиграл” эту “войну”, потому что в отличие от переменного тока, постоянный, несет большие потери в мощности при передаче на расстояния.

 Переменный ток легко трансформировать и благодаря этому передавать на огромные расстояния.

Источники постоянного тока

Источниками постоянного тока могут быть аккумуляторы, либо другие источники в которых ток появляется благодаря химической реакции (например, пальчиковая батарейка).  

Также источниками постоянного тока может быть генератор постоянного тока, в котором ток вырабатывается благодаря 
явлению электромагнитной индукции, а затем выпрямляется с помощью коллектора.

Постоянный ток может быть получен с помощью выпрямления переменного тока. Для этого существуют различные выпрямители и преобразователи.

Применение

Постоянный ток,  достаточно широко применяется в электрических схемах и устройствах. К примеру, дома, большинство приборов, таких как модем или зарядное устройство для мобильного, работают на постоянном токе. Генератор автомобиля, вырабатывает и преобразует постоянный ток, для зарядки аккумулятора. Любое портативное устройство питается от источника постоянного тока.

В промышленности постоянный ток используется в машинах постоянного тока, например в двигателях, или генераторах. В некоторых странах существуют высоковольтные линии электропередачи постоянного тока.

Постоянный ток также нашел свое применение и в медицине, например в электрофорезе – процедуре лечения с помощью электрического тока.

В железнодорожном транспорте, кроме переменного, используется и постоянный ток. Это связано с тем, что тяговые двигатели, которые имеют более жесткие механические характеристики, чем асинхронные, являются двигателями постоянного тока.

Влияние на организм человека

Постоянный ток в отличие от переменного является более безопасным для человека. Например, смертельным током для человека является 300 мА если это ток постоянный, а если переменный с частотой 50 Гц, то 50-100 мА.

1 1 1 1 1 1 1 1 1 1 4.72 (125 Голоса)

Источник: https://electroandi.ru/elektrichestvo-i-magnetizm/postoyannyj-tok.html

Постоянный и переменный ток: преимущества и недостатки ⋆ diodov.net

Какой электрический ток лучше: постоянный или переменный ток? Чтобы дать ответ на данный вопрос нужно оценить их преимущества и недостатки по следующим основным направлениям: выработка, передача, распределение и потребление электроэнергии. Проще говоря, нужно ответить на следующие вопросы. Какой род тока проще и дешевле получить, затем передать его на большое расстояние, после чего распределить электроэнергию между потребителями. Потребители какого рода энергии более эффективны?

Сегодня преимущественное большинство электрической энергии, добываемой или генерируемой в мире, выпадет на переменный ток. И в первую очередь это связано с тем, что переменный ток проще преобразовывать из более низкого напряжения в более высокое и наоборот, то есть он проще в трансформации.

Место производство электрической энергии большой мощности, к сожалению пока что невозможно базировать в тех местах, где хотелось бы, то есть непосредственно рядом с потребителями.

Обратите внимание

Например, мощную гидроэлектростанцию можно соорудить только на полноводной реке и то не в каждом месте. А конечный потребитель может находиться на расстоянии сотни и тысячи километров от электростанции.

Поэтому очень важно обеспечить такие условия, чтобы минимизировать потери мощности в проводах линии электропередачи ЛЭП. В этом случае потери электроэнергии снижаются с ростом напряжения. Давайте остановимся на этом более подробно.

Предположим, имеется некая электростанция, а точнее ее генератор, выдающий мощность 1000 кВт и нам необходимо передать эту мощность потребителю, который находится на расстоянии, например на 100 км от генератора.

Для сравнения электрическую энергию будем передавать напряжением 10 кВ и 100 кВ. При заданных мощности и напряжениях определим величины токов, протекающих в проводах.

I1 = P/U1 = 1000 кВт/10 кВ = 100 А.

I2 = P/U2 = 1000 кВт/100 кВ = 10 А.

Как мы видим, при увеличении напряжения в 10 раз, ток снижается тоже в 10 раз.

Потери электроэнергии в проводах ЛЭП и не только в них определяются квадратом тока, протекающего в них и сопротивлением самого провода. Для простоты расчет примем сопротивление проводов, равным 10 Ом. Подсчитаем потери мощности для обоих случаев.

Pпот1 = I12∙R = 1002∙10 = 100000 Вт = 100 кВт.

Pпот2 = I22∙R = 102∙10 = 1000 Вт = 1 кВт.

Теперь, как мы видим, с ростом напряжения в 10 раз потери электроэнергии снижаются в 100 раз! При более низком напряжении доля потерь в проводах составляет 10 % от мощности, выдаваемой генератором.

А при более высоком напряжении эта доля составляет всего 0,1 %. Поэтому очень важным параметров сравнения родов тока является возможность повышать напряжение, а затем его снижать в конечных пунктах.

Важно

Можно было бы и не повышать напряжение, а для снижения потерь применять более толстые провода, но такой подход экономически не оправдан, поскольку медные провода стоят денег.

Также можно было бы и не повышать напряжение генератора, а создать такой генератор, который сразу бы выдавал высокое напряжения. Но здесь возникают сложности при изготовлении таких генераторов. Сложности связаны в основном с изоляцией высоковольтных элементов генератора. Короче говоря, изготовить трансформатор на высокое напряжение гораздо проще и дешевле, нежели генератор.

Преимущества переменного тока

Вопрос повышения и снижения переменного напряжения при нынешнем уровне технического развития решается гораздо проще, чем постоянного электрического тока.

Такие преобразования довольно просто выполняются с помощью относительно простого устройства – трансформатора. Трансформатор обладает высоким коэффициентом полезного действия, который достигает 99 %.

Это значит, что не более одного процента мощности теряется при повышении или снижении напряжения.

К тому же трансформатор позволяет развязать высокое напряжение с более низким, что для большинства электроустановок является очень весомым аргументом.

Применение трехфазной системы переменного тока позволяет еще больше повысить эффективность системы электроснабжения. Для передачи электричества аналогичной мощности потребуется меньше проводов, чем при однофазном переменном токе. К тому же трехфазный трансформатор меньше габаритов однофазного трансформатора равной мощности.

Электрические машины переменного тока, в частности асинхронные двигатели с короткозамкнутым ротором имеют гораздо проще конструкцию, чем двигатели постоянного тока.

Совет

Главным преимуществом трехфазных асинхронных двигателей является отсутствие коллекторно-щеточного узла. Благодаря чему снижаются расходы на изготовление и эксплуатацию таких электрических машин.

Кроме того за счет отсутствия коллекторно-щеточного узла асинхронные двигатели имеют в разы большую мощность по сравнению с двигателями постоянного тока.

Недостатки постоянного тока

Из выше изложенного следуют такие недостатки.

  1. Сложность повышения и снижения напряжения, то есть преобразования электроэнергии постоянного тока. В первую очередь это вызвано сложность конструкций преобразователей. Поскольку необходимы мощные полупроводниковые ключи, рассчитанные на высокое напряжение. Отсутствие которых приводит к большому числу последовательно и параллельно соединенных полупроводниковых приборов. В результате снижается надежность всего преобразователя, увеличивается стоимость и возрастают потери мощности.
  2. Электрические машины имеют более сложную конструкцию, поэтому менее надежны и более затратные, как в производстве, так и в эксплуатации.
  3. Сложности в развязке высокого и низкого напряжений.

Недостатки переменного тока

  1. Важнейшим недостатком переменного тока является наличие реактивной мощности. Как известно, конденсатор и катушка индуктивности проявляют свои реактивные свойства только в цепях переменного тока.

    Проще говоря, катушка и конденсатор создают реактивное сопротивление переменному току, но не потребляю его.

    В результате этого из полной мощности, отдаваемой генератором переменного тока, часть мощности не затрачивается на выполнение полезной работы, а лишь бесполезно циркулирует межу генератором и нагрузкой. Такая мощность называется реактивной и является вредной.

    Поэтому ее стараются минимизировать.

Однако большинство нагрузок – двигатели, трансформаторы и сами провода являются индуктивными элементами. А чем больше индуктивность, тем большую долю составляет реактивная мощность от полной и с этим нужно бороться.

  1. Второй главный недостаток переменного тока заключается в том, что он протекает не по всему сечению проводника, а вытесняется ближе к его поверхности. В результате снижается площадь, по которой протекает электрический ток, что в свою очередь приводит к увеличению сопротивления проводника и к росту потерь мощности в нем.

Чем выше частота, тем сильнее вытесняется ток к поверхности проводника и в конечном счете, тем выше потери мощности.

Преимущества постоянного тока

  1. Главное преимущество электрической энергии постоянного тока – это отсутствие реактивной мощности. А это значит, что вся мощность, выработанная генератором, потребляется нагрузкой за вычетом потерь в проводах.

  2. Постоянный ток в отличие от переменного протекает по всему сечению проводника.

Указанные два пункта приводят к тому, что если передавать одну и ту же мощность при равных напряжениях постоянным и переменным токами, то потери мощности электроэнергии постоянным током были бы почти в два раза меньше, чем при переменном токе.

К тому же, если рассматривать такие бытовые электронные устройства как ноутбуки, компьютеры, телевизоры и т. п., то все они имеют блоки питания, преобразующие переменное напряжение 220 В (230 В) в постоянное напряжение более низкой величины. А такие преобразования связаны с частичной потерей мощности.

Кроме того, как было сказано ранее, трехфазный асинхронный двигатель (АД) можно подключить напрямую к сети 380 В, что вполне оправдано в том случае, когда не требуется изменять режим работы двигателя.

Но если необходимо изменять частоту вращения его вала, то нужно на обмотки статора подавать напряжение, частота и амплитуда которого должны изменяться пропорционально, согласно закону Костенка. Для этого применяют трехфазные автономные инверторы (АИ), чаще всего инверторы напряжения.

Такие инверторы должны получать питание от источника постоянного напряжения.

Также следует заметить, что последним временем начали очень широко применяться солнечные батареи, которые вырабатывают постоянный ток. К тому же, значительно возросла мощность аккумуляторных батарей и повысилась емкость суперконденсаторов, которые также относятся к источникам постоянного тока и с каждым днем находят все большее практическое применение.

Выводы: постоянный или переменный ток

Несмотря на все преимущества постоянного тока, значительная сложность, вызванная преобразованием больших мощностей, главным образом сказывается сложность повышения и понижения постоянного напряжения, сводит на нет указанные выше преимущества.

Поэтому, до тех пор, пока не будут разработаны полупроводниковые ключи огромной мощности и соответствующие преобразователи на их основе, переменный ток остается вне конкуренции.

К тому же сейчас уже применяются четырехквадрантные преобразователи или активные выпрямители, позволяющие скомпенсировать реактивную составляющую нагрузки, что позволяет получить коэффициент мощности, равный почти единице. Благодаря чему исключается потребление реактивной мощности.

Как вы видите, однозначного ответа на вопрос, какой ток лучше: постоянный или переменный, не существует. Следует сравнивать все преимущества и недостатки для конкретного случая.

Источник: https://diodov.net/postoyannyj-i-peremennyj-tok-preimushhestva-i-nedostatki/

Что будет, если подать в электросеть постоянный ток

Война токов завершилась, и Тесла с Вестингаузом, похоже, победили. Сети постоянного тока сейчас используются кое-где на железной дороге, а также в виде свервысоковольтных линий передачи.

Подавляющее большинство энергосетей работают на переменном токе.

Но давайте представим, что вместо переменного напряжения с действующим значением 220 вольт в ваш дом внезапно стали поступать те же 220 В, но постоянного тока.

Театр начинается с вешалки, а наш электрический цирк — с вводного щитка.

Автоматы

И сразу хорошие новости: защитные автоматы будут работать как положено. Автомат имеет два расцепителя: тепловой и электромагнитный. Тепловой служит для защиты от длительной перегрузки. Ток нагревает биметаллическую пластинку, она изгибается и размыкает цепь.

Электромагнитный элемент срабатывает от кратковременного импульса тока при коротком замыкании. Он представляет собой соленоид, который втягивает в себя сердечник и, опять же, разрывает цепь. Обе эти системы прекрасно работают на постоянном токе.
источник картинки: выключатель-автоматический.

рф

Дополнения от Bronx и AndrewN:

Магнитный расцепитель срабатывает по амплитудному значению тока, то есть в 1,4 раза больше действующего. На постоянном токе его ток срабатывания будет в 1,4 раза выше. Дугу постоянного тока сложнее погасить, так что при коротком замыкании увеличится время разрыва цепи и ускорится износ автомата. Существуют специальные автоматы, рассчитанные на работу с постоянным током.

УЗО

Помимо автоматов, в щитке есть устройство защитного отключения (УЗО). Его цель — обнаруживать утечку тока из сети на землю, например при касании человеком токоведущих частей. УЗО измеряет силу тока в двух проводниках, проходящих через него.

Если в нагрузку втекает такой же ток, что и вытекает — всё в порядке, утечки нет. Если же токи не равны, УЗО бьёт тревогу и разрывает цепь. Чувствительный элемент УЗО — дифференциальный трансформатор.

У такого трансформатора две первичные обмотки, включенные в противоположных направлениях. Если токи равны, их магнитные поля компенсируют друг друга и на выходе сигнала нет.

Если токи не скомпенсированы, на выходе сигнальной обмотки появляется напряжение, на которое реагирует схема УЗО. На постоянном токе трансформатор работать не будет, и УЗО окажется бесполезным.

Счетчик

Неважно, какой у вас электросчетчик — старый механический или новый электронный — работать он не будет. Механический счетчик представляет собой электродвигатель, где ротором служит металлический диск, а статор содержит две обмотки.

Одна обмотка включена последовательно с нагрузкой и измеряет ток, вторая включена параллельно и измеряет напряжение. Таким образом, чем больше потребляемая мощность, тем быстрее крутится диск.

Работа такого счетчика основана на явлении электромагнитной индукции, и при постоянном токе в обмотках диск останется неподвижен. Электронный счетчик устроен по-другому.

Он напрямую измеряет напряжение (через резистивный делитель) и ток (при помощи шунта или датчика Холла), оцифровывает их, а затем микропроцессор пересчитывает полученные данные в киловатт-часы.

В принципе, ничто не мешает такой схеме работать с постоянным током, но во всех бытовых счетчиках постоянная составляющая программно отфильтровывается и на показания не влияет. Счетчики постоянного тока существуют в природе, их ставят, например, на электровозы, но в квартирном щитке вы такой не найдёте. Ну и ладно, не хватало ещё платить за всё это безобразие! Идём дальше по цепи и смотрим, какие электроприборы могут нам встретиться.

Нагревательные приборы

Тут всё прекрасно. Электронагреватель — это чисто резистивная нагрузка, а тепловое действие тока не зависит от его формы и направления. Электроплиты, чайники, кипятильники, утюги и паяльники будут работать на постоянном токе точно так же, как и на переменном. Биметаллические терморегуляторы (как, например, в утюге) тоже будут функционировать правильно.

Лампы накаливания

Старая добрая лампочка Ильича на постоянном токе чувствует себя не хуже, чем на переменном. Даже лучше: не будет пульсаций света, лампа не будет гудеть. На переменном токе лампочка может гудеть из-за того, что спираль (особенно, если она провисла) работает как электромагнит, сжимаясь и растягиваясь дважды за период.

При питании постоянным током этого неприятного явления не будет. Однако если у вас установлены регуляторы яркости (диммеры), то они работать перестанут. Ключевым элементом диммера является тиристор — полупроводниковый прибор, который открывается и начинает пропускать ток в момент подачи управляющего импульса.

Закрывается тиристор, когда ток через него прекращает течь. При питании тиристора переменным током он будет закрываться при каждом переходе тока через ноль. Подавая управляющий импульс в разное время относительно этого перехода, можно менять время, в течение которого тиристор будет открыт, а значит, и мощность в нагрузке.

Именно так и работает диммер. При питании постоянным током тиристор не сможет закрыться, и лампа всегда будет гореть на 100% мощности. А возможно, управляющая схема не сможет «поймать» переход сетевого напряжения через ноль и не подаст импульс для открытия тиристора. Тогда лампа не загорится совсем.

В любом случае, диммер будет бесполезен.

Люминесцентные лампы

Люминесцентную лампу нельзя включать напрямую в сеть, для нормальной работы ей нужен пуско-регулирующий аппарат (ПРА). В простейшем случае он состоит из трёх деталей: стартёра, дросселя и конденсатора. Последний нужен не самой лампе, а остальным потребителям в сети, так как он улучшает коэффициент мощности и фильтрует помехи, создаваемые лампой.

Стартёр — это неоновая лампочка, один из электродов которой при нагреве изгибается и касается второго электрода. Дроссель — большая катушка индуктивности, включенная последовательно с лампой: Штатно всё это работает так: при включении зажигается разряд в стартёре, его контакты нагреваются и замыкаются между собой.

Ток течёт через нити накала лампы, отчего те разогреваются и начинают испускать электроны. В это время стартёр остывает и размыкает цепь. Ток резко падает, и за счет самоиндукции на дросселе появляется импульс высокого напряжения. Этот импульс зажигает разряд в лампе, и дальше он горит самостоятельно.

Дроссель теперь ограничивает ток разряда, работая как добавочное сопротивление. Что же будет на постоянном токе? Стартёр сработает, лампа зажжётся как положено, но вот дальше всё пойдёт наперекосяк. В цепи постоянного тока у дросселя не будет индуктивного сопротивления (только активное сопротивление проводов, а оно мало), а значит, он больше не сможет ограничивать ток.

Чем выше ток разряда, тем сильнее ионизируется газ в лампе, сопротивление падает, и ток растёт ещё сильнее. Процесс будет развиваться лавинообразно и закончится взрывом лампы.

Лампы с электронным ПРА

Электромагнитные ПРА просты, но не лишены недостатков. У них низкий КПД, дроссель громоздкий и тяжелый, гудит и нагревается, лампа загорается с диким миганием, а потом мерцает с частотой 100 Гц. Всех этих недостатков лишен электронный пускорегулирующий аппарат (ЭПРА).

Как он работает? Если посмотреть схемы различных ЭПРА, можно заметить общий принцип. Напряжение сети выпрямляется (преобразуется в постоянное), затем генератор на транзисторах или микросхеме вырабатывает переменное напряжение высокой частоты (десятки кГц), которое питает лампу.

В дорогих ЭПРА есть схемы разогрева нитей и плавного запуска, которые продлевают срок службы лампы.
источник картинки: aliexpress.com Схожую схемотехнику имеют как блоки для линейных ламп, так и компактные «энергосберегайки», которые вкручиваются в обычный патрон.

Поскольку на входе ЭПРА стоит выпрямитель, можно питать всю схему постоянным напряжением.

Светодиодные лампы

Светодиод требует для работы небольшое постоянное напряжение (около 3.5 В, обычно соединяют несколько диодов последовательно) и ограничитель тока. Схемы светодиодных ламп весьма разнообразны, от простых до довольно сложных. Самое простое — последовательно со светодиодами поставить гасящий резистор. На нём упадёт лишнее напряжение, он же будет ограничивать ток.

Такая схема имеет чудовищно низкий КПД, поэтому на практике вместо резистора ставят гасящий конденсатор. Он также обладает сопротивлением (для переменного тока), но на нём не рассеивается тепловая мощность. По такой схеме собраны самые дешёвые лампы. Светодиоды в них мерцают с частотой 100 Гц.

На постоянном токе такая лампа работать не будет, так как для постоянного тока конденсатор имеет бесконечное сопротивление.
источник картинки: bigclive.com Более дорогие лампы устроены сложнее, очень похоже на ЭПРА для люминесцентных ламп. Источник питания в них содержит высокочастотный импульсный стабилизатор, который питается выпрямленным сетевым напряжением.

Как и в случае с ЭПРА, схема будет нормально работать, если подать на неё постоянное напряжение.
источник картинки: powerelectronictips.com

Универсальные коллекторные двигатели

Универсальный коллекторный двигатель (УКД) состоит из неподвижного статора и ротора, который вращается внутри. Статор имеет одну обмотку, а ротор сразу несколько. Роторные обмотки подключаются через коллектор — цилиндр с контактами, по которому скользят угольные щётки.

Взаимодействие магнитных полей статора и ротора заставляет ротор поворачиваться. Коллектор устроен так, что всё время включает ту из обмоток, которая находится перпендикулярно обмотке статора — для неё вращающий момент будет максимальным.

Такой двигатель может работать при питании как переменным, так и постоянным током. Собственно, поэтому он и называется «универсальным». При смене полярности одновременно меняется направление магнитного поля и в статоре, и в роторе, в результате двигатель продолжает вращаться в ту же сторону.

На постоянном токе УКД развивает даже больший момент, чем на переменном, за счет отсутствия индуктивного сопротивления обмоток. Универсальные коллекторные двигатели применяются там, где нужно получить большую мощность при малых габаритах.

В бытовой технике УКД стоят в стиральных машинах, пылесосах, фенах, блендерах, миксерах, мясорубках, а также в электроинструментах. Все эти приборы продолжат работать, если напряжение в розетке внезапно «выпрямится».

Синхронные двигатели

У синхронного двигателя в статоре несколько обмоток, которые создают вращающееся магнитное поле. Ротор содержит постоянный магнит либо обмотку, питаемую постоянным током. Магнитное поле статора сцепляется с полем ротора и вращает его за собой. Особенностью такого двигателя является то, что частота его вращения зависит только от частоты питающего тока.

На постоянном токе, очевидно, такой двигатель будет вращаться с нулевой частотой, то есть остановится. В быту применяются маломощные синхронные двигатели там, где нужно поддерживать строго постоянную частоту вращения. В основном, это электромеханические часы и таймеры.

Также синхронными являются двигатель вращения тарелки в СВЧ-печи и двигатель сливного насоса в стиральной машине.

Асинхронные двигатели

Асинхронный двигатель похож своим устройством на синхронный. В нем также статор имеет несколько обмоток и создаёт вращающееся поле. Но обмотка ротора никуда не подключена и замкнута накоротко. Ток в ней создаётся за счет явления электромагнитной индукции в переменном поле статора.

Этот ток создаёт своё магнитное поле, которое взаимодействует с вращающимся полем статора и заставляет ротор вращаться. Асинхронные двигатели отличаются низким уровнем шума и большим ресурсом из-за отсутствия трущихся щёток. Их можно встретить в холодильниках, кондиционерах и вентиляторах. При питании постоянным током магнитное поле статора вращаться не будет.

Также не возникнет ток в короткозамкнутом роторе. Двигатель останется неподвижен, а обмотка будет просто нагреваться, как обычный кусок провода.

Вентильные двигатели

Строго говоря, это не отдельный тип двигателя, а способ управления им. Сам двигатель может быть синхронным или асинхронным. Главная особенность в том, что напряжения на обмотках формируются управляющей схемой по сигналу с датчика положения ротора.

Это позволяет регулировать скорость и крутящий момент в широких диапазонах, ограничивать пусковые токи и даёт кучу возможностей, вроде стабилизации частоты вращения.

Вот пара хороших статей, объясняющих всю эту магию: Раз
Два Вентильные двигатели всё шире используются в бытовой технике: в стиральных машинах, холодильниках, кондиционерах, пылесосах. Обычно такую технику можно узнать по прилагательному «инверторный» в рекламе.

Вентильный двигатель безразличен к форме питающего напряжения. Напряжение сети первым делом выпрямляется, а затем управляющий блок «лепит» из него несколько разных синусоид (обычно три) для питания обмоток мотора. Естественно, такая система будет спокойно работать на постоянном токе.

Трансформаторные (линейные) блоки питания

Трансформатор состоит из нескольких обмоток, связанных общим магнитопроводом. Переменный ток в одной обмотке (первичной) порождает индукционные токи во всех остальных обмотках (вторичных).

Ключевая особенность трансформатора, ради которой его обычно и используют, в том, что напряжения на обмотках соотносятся так же, как количество витков в этих обмотках. Если в первичной обмотке намотать 1000 витков, а во вторичной — 100, такой трансформатор будет понижать напряжение в 10 раз. Если включить его наоборот — в 10 раз повышать.

Очень просто и удобно. В линейном блоке питания напряжение сети понижается (или повышается, если надо) до необходимого уровня при помощи трансформатора. Далее стоит выпрямитель, который преобразует переменное напряжение в постоянное, и фильтр, сглаживающий пульсации.

Обратите внимание

Затем может идти стабилизатор, который поддерживает неизменным выходное напряжение. Линейные блоки питания постепенно вытесняются импульсными, но первые работают ещё много где. В микроволновке, если она не «инверторная», есть мощный трансформатор, который повшает сетевые 220 В до нескольких киловольт, необходимых для работы магнетрона.

От трансформаторов питается управляющая электроника в стиральных машинах, кухонных плитах и кондиционерах. Трансформаторные блоки питания используются в аудиоаппаратуре и дешёвых зарядных устройствах.

Что случится с трансформатором, если его включить в сеть постоянного тока? Во-первых, на вторичных обмотках напряжение не появится, так как электромагнитная индукция возникает лишь при изменении тока. Во-вторых, обмотка не будет обладать индуктивным сопротивлением, а значит, через неё потечёт гораздо больший ток, чем рассчитано. Трансформатор будет перегреваться и довольно быстро сгорит.

Импульсные блоки питания

Чем выше частота переменного тока, тем эффективнее работает трансформатор (в разумных пределах, конечно). Если использовать частоту в несколько десятков килогерц вместо сетевых 50 Гц, можно прилично уменьшить габариты трансформаторов при той же передаваемой мощности. Эта идея лежит в основе импульсных блоков питания.

Работает такой блок следующим образом: напряжение сети выпрямляется, полученное постоянное напряжение питает транзисторный генератор, который даёт снова переменное напряжение, но уже высокой частоты. Его теперь можно понижать или повышать трансформатором, выпрямлять и подавать в нагрузку.

По такой схеме сейчас питается подавляющее большинство электроники: компьютеры, мониторы, телевизоры, зарядные устройства для ноутбуков, телефонов и прочих гаджетов. Поскольку входное напряжение первым делом выпрямляется, импульсный блок питания должен без проблем работать на постоянном токе. Но есть пара моментов, которые могут всё испортить.

Во-первых, напряжение после выпрямителя равно почти амплитудному значению переменного напряжения. То есть для ~220 В на входе выпрямитель даст 311 B. Мы же по условию подаём постоянное напряжение 220 В, что на 30% ниже. Это скорее всего не вызовет проблем, потому что современные блоки питания могут работать в широком диапазоне напряжений, обычно от 100 до 250 В.

Во-вторых, выпрямитель состоит из четырёх диодов, которые работают парами: одна пара на положительной полуволне тока, другая — на отрицательной. Таким образом, каждый диод пропускает ток лишь половину времени. Если мы подадим на выпрямитель постоянное напряжение, одна пара диодов будет открыта всегда, и на них будет рессеиваться двойная мощность.

Если диоды не имеют двойного запаса по току, они могут сгореть. Но это не слишком большая беда: можно просто выкинуть выпрямитель и подавать постоянное напряжение сразу после него.

Заключение

После того, как вы потушили несколько возгораний и сгребли в кучу испорченные приборы, настало время подвести итоги. Переход на постоянный ток переживёт либо старая и простая техника (лампы накаливания, нагреватели, коллекторные моторы с механическим управлением) либо, наоборот, самая современная (с импульсными блоками питания и инверторными моторами).

К счастью, описанный сценарий вряд ли осуществится на практике, если не рассматривать возможность специально организованной диверсии. Ни при какой возможной аварии в энергосети переменное напряжение не станет вдруг постоянным. Правда, при возможных авариях случаются иные нехорошие вещи, но это уже совсем другая история. Берегите себя и делайте бэкапы.

Источник: https://habr.com/post/372749/

Постоянный электрический ток

Постоянный ток (DC – Direct Current) – электрический ток, не меняющий своей величины и направления с течением времени.

В реальности постоянный ток не может сохранять величину постоянной. Например, на выходе выпрямителей всегда присутствует переменная составляющая пульсаций. При использовании гальванических элементов, батареек или аккумуляторов, величина тока будет уменьшаться по мере расхода энергии, что актуально при больших нагрузках.

Постоянный ток существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины.

Постоянная составляющая тока и напряжения. DC

Если рассмотреть форму тока в нагрузке на выходе выпрямителей или преобразователей, можно увидеть пульсации – изменения величины тока, существующие, как результат ограниченных возможностей фильтрующих элементов выпрямителя.


В некоторых случаях величина пульсаций может достигать достаточно больших значений, которые нельзя не учитывать в расчётах, например, в выпрямителях без применения конденсаторов.
Такой ток обычно называют пульсирующим или импульсным.

В этих случаях следует рассматривать постоянную DC и переменную AC составляющие.

Постоянная составляющая DC – величина, равная среднему значению тока за период.

AVG – аббревиатура Avguste – Среднее.

Переменная составляющая AC – периодическое изменение величины тока, уменьшение и увеличение относительно среднего значения .

Важно

Следует учитывать при расчётах, что величина пульсирующего тока будет равна не среднему значению, а квадратному корню из суммы квадратов двух величин – постоянной составляющей (DC) и среднеквадратичного значения переменной составляющей (AC), которая присутствует в этом токе, обладает определённой мощностью и суммируется с мощностью постоянной составляющей.

Вышеописанные определения, а так же термины AC и DC могут быть использованы в равной степени как для тока, так и для напряжения .

Отличие постоянного тока от переменного

По ассоциативным предпочтениям в технической литературе импульсный ток часто называют постоянным, так как он имеет одно постоянное направление.

В таком случае необходимо уточнять, что имеется в виду постоянный ток с переменной составляющей.
А иногда его называют переменным, по той причине, что периодически меняет величину. Переменный ток с постоянной составляющей.

Обычно берут за основу составляющую, которая больше по величине или которая наиболее значима в контексте.

Следует помнить, что постоянный ток или напряжение характеризует, кроме направления, главный критерий – постоянная его величина, которая служит основой физических законов и является определяющей в расчётных формулах электрических цепей.
Постоянная составляющая DC, как среднее значение, является лишь одним из параметров переменного тока.

Для переменного тока (напряжения) в большинстве случаев бывает важен критерий – отсутствие постоянной составляющей, когда среднее значение равно нулю.

Это ток, который протекает в конденсаторах, силовых трансформаторах, линиях электропередач. Это напряжение на обмотках трансформаторов и в бытовой электрической сети.

В таких случаях постоянная составляющая может существовать только в виде потерь, вызванных нелинейным характером нагрузок.

Параметры постоянного тока и напряжения

Сразу следует отметить, что устаревший термин “сила тока” в современной отечественной технической литературе используется уже нечасто и признан некорректным.

Электрический ток характеризует не сила, а скорость и интенсивность перемещения заряженных частиц. А именно, количество заряда, прошедшее за единицу времени через поперечное сечение проводника.

Основным параметром для постоянного тока является величина тока.

Единица измерения тока – Ампер.
Величина тока 1 Ампер – перемещение заряда 1 Кулон за 1 секунду.

Единица измерения напряжения – Вольт.
Величина напряжения 1 Вольт – разность потенциалов между двумя точками электрического поля, необходимая для совершения работы 1 Джоуль при прохождения заряда 1 Кулон.

Для выпрямителей и преобразователей часто бывает важными следующие параметры для постоянного напряжения или тока:

Размах пульсаций напряжения (тока) – величина, равная разности между максимальным и минимальным значениями.
Коэффициент пульсаций – величина, равная отношению действующего значения переменной составляющей AC напряжения или тока к его постоянной составляющей DC.

Источник: http://tel-spb.ru/dc/

Постоянный ток: история открытия и изучения явления, применение в современном мире :

Еще древнегреческий философ Фалес писал о свойствах янтаря, потертого шерстью, притягивать мелкие предметы. Но достаточно долгое время все знания об электричестве ограничивались этим любопытным опытом.

Никто не связывал с этим явлением природные молнии, наблюдаемые во время гроз. Дальнейшее изучение электрического тока, пока без разделения на постоянный и переменный, продолжилось лишь в XVII веке.

И за пару сотен лет ученые продвинулись очень далеко.

Открытие явления

В 1600 году был введен термин “электричество”, а более чем полвека спустя началось его активное изучение. Изначально разделения на постоянный и переменный ток не существовало, так что исследования были несистематичными.

Первая теория, касающаяся природы электричества, была сформулирована в XVIII веке Бенджамином Франклиным, который, впрочем, остался в истории в первую очередь как политический деятель. Чуть позднее был сконструирован первый конденсатор – так называемая Лейденская банка.

Тем не менее, считается, что всерьез история исследования постоянного тока началась с опытов Гальвани, касающихся, как ни странно, в первую очередь биологии, а не физики. Знаменитый итальянец буквально перевернул науку.

Изучение постоянного тока

Опыты Гальвани касались в первую очередь физиологии. Пропуская электрический ток через тело лягушки, он заметил, как ее мышцы сокращались. Описание этих опытов заинтересовало не только биологов, но и физиков.

Сам же Гальвани, проведя еще серию исследований, счел, что мышцы являются чем-то вроде Лейденской банки, или, если быть точнее, ее батарей. Эти опыты легли в основу современной электрофизиологии.

Последователь итальянца, его соотечественник Алессандро Вольта, в 1800 году создал первый источник питания постоянного тока – гальванический элемент.

Совет

Англичане Карлейл и Николсон повторили опыты своего коллеги, придя к выводу, что в определенных условиях электричество, пропущенное через воду, заставляет ее разлагаться на составные элементы. Подобные эксперименты в конечном итоге дали стимул развитию химии.

Русские ученые также приложили руку к исследованиям – уроженец Санкт-Петербурга Василий Петров в 1803 году описал явление электрической дуги. Однако 9 лет спустя это открытие произошло снова и было представлено как случившееся впервые. Дальнейшие исследования уже были направлены на изучение характеристик и законов, управляющих током. Параллельно ученые находили все новые и новые способы применения электричества, изобретая удивительные приборы, которыми человечество пользуется до сих пор.

Характеристики и параметры

Как очевидно из названия, величина постоянного тока и его напряжение в любой момент остаются неизменными. Несмотря на то что движение заряженных частиц происходит непрерывно, их общее пространственное положение остается стационарным.

Кстати, как ни удивительно, но с технической точки зрения термин “постоянный ток” является некорректным, ведь неизменным является не он, а напряжение источника питания, его электродвижущая сила (ЭДС). Но понятие настолько прочно вошло в употребление, что его изменение просто невозможно представить.

Итак, главным признаком этой разновидности остается отсутствие смены полярности напряжения на источнике питания. Постоянный ток обладает рядом параметров, которые, разумеется, присущи и другим типам:

  • Сила или величина (I). Показывает количество тока, протекающего через поперечное сечение проводника за единицу времени. Измеряется в амперах.
  • Плотность (F). Отношение силы тока к площади поперечного сечения проводника. Единицы измерения – А/мм2.
  • Напряжение (V). Эта физическая величина показывает работу источника электроэнергии при переносе заряда по отношению к ее величине. Измеряется в вольтах.
  • Электрическая мощность (P). Обозначает скорость передачи или преобразования электроэнергии. Единица – ватт.
  • Сопротивление (R). Эта величина характеризует свойство проводника препятствовать прохождению тока. Измеряется в омах.

Законы и формулы

Все вышеназванные величины напрямую связаны друг с другом, и практически любая из них может быть выражена через остальные. В школьном курсе физики это подробно изучается, но нелишним будет повторить все снова. Самыми простыми примерами формул могут являться следующие:

  • V = I x R = P : I;
  • I = V : R = P : V;
  • R = V2 : P = V : I = P : I2;
  • P = V x I = I2 x R = V2 : R.

Разумеется, многие помнят и о законе Ома, хотя не все смогут его сформулировать. Он применим и к постоянному току и описывает зависимость ЭДС источника или напряжения и силы от сопротивления. На языке формул это выглядит так:

  • U = IR. То есть разность потенциалов между началом и концом проводника равна произведению силы тока и сопротивления.

В том числе и с этим законом связана еще одна важная зависимость. Она описывает переход электрической энергии в тепловую при передаче. Иными словами, речь идет о потерях мощности в виде нагрева проводов. Эта зависимость называется законом Джоуля-Ленца и описывается так:

где Q – выделяемая теплота, I – сила тока, R – сопротивление, а t – промежуток времени.

Эта формула работает только для постоянной разновидности. То есть она применима только для частного случая, в то время как для переменного она будет выглядеть несколько сложнее.

Отличия от остальных видов

Если рассмотреть графики основных типов электротока, то никаких вопросов не возникнет. Линия постоянного будет прямой, остающейся на одном уровне с течением времени, переменного – пилообразной. В отличие от последнего, первый не обладает таким параметром, как частота, вернее, в этом случае она является нулевой.

Кроме того, направление постоянного тока не меняется со временем. Различается и обозначение – DC (direct current) и AC (alternating current). Как нетрудно догадаться, первый – это постоянный, а второй – переменный. К тому же последняя разновидность может быть как одно-, так и трехфазной.

В этом и заключаются основные отличия.

Источники и усилители

Разумеется, постоянный ток не берется из ниоткуда. Существуют спеицальные приборы, которые его генерируют. Это обычные батарейки, аккумуляторы и другие современные источники. Первым из них был тот самый гальванический элемент Вольта. Но иногда ток нужно не только генерировать, но и усиливать.

Для этого тоже есть специальные устройства – усилители постоянного тока (УПТ). Эти приборы необходимы для того, чтобы повышать напряжение. Усилитель в полном смысле можно назвать УПТ, если его рабочий диапазон включает все частоты, вплоть до самых низких, и нулевую.

Эти устройства очень востребованы и широко используются во многих областях электроники, так что их развитие и совершенствование происходит непрерывно.

Применение в современном мире

Он повсеместно. Любые современные приборы, работающие как от сети, так и от аккумуляторов, используют постоянный ток. В первом случае устройство предусматривает специальный элемент, преобразующий электричество из одной разновидности в другую.

Во втором же в источнике питания происходит химическая реакция, которая поддерживает напряжение неизменным. Казалось бы, что в этом случае проще было бы, если бы в сети был постоянный, а не переменный ток, но это не так.

Вторую разновидность проще вырабатывать, а также его не приходится преобразовывать для работы трансформаторов. А устройства, позволяющие из переменного получать постоянный называются выпрямителями, хотя приборы, проводящие обратное действие, – инверторами.

Нашел свое применение этот вид тока и в электрохимии, некоторых видах сварки, обработке металлов, медицине и многих других областях. Он действительно везде, и иногда это кажется настоящим чудом, ведь все начиналось с обычного янтаря.

Источник: https://www.syl.ru/article/150336/mod_postoyannyiy-tok-istoriya-otkryitiya-i-izucheniya-yavleniya-primenenie-v-sovremennom-mire

Постоянный электрический ток. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Электрический ток — упорядоченное (направленное) движение заряженных частиц Направленное движение свободных зарядов (носителей тока) в проводнике возможно под действием внешнего электрического поля

За направление тока принимается направление движения положительно заряженных частиц.

Электрический ток — упорядоченное (направленное) движение заряженных частиц Направленное движение свободных зарядов (носителей тока) в проводнике возможно под действием внешнего электрического поля

За направление тока принимается направление движения положительно заряженных частиц.

Сила тока в данный момент времени — скалярная физическая величина, равная пределу отношения величины электрического заряда, прошедшего сквозь поперечное сечение проводника, к промежутку времени его прохождения

Единица силы тока (основная единица СИ) — ампер (1 А) 1 А = 1 Кл/с

Постоянный электрический ток — ток, сила которого не изменяется с течением времени

Источник тока — устройство, разделяющее положительные и отрицательные заряды

Сторонние силы — силы неэлектростатического происхождения, вызывающие разделение зарядов в источнике тока

ЭДС— скалярная физическая величина, равная отношению работы сторонних сил по перемещению положительного заряда от отрицательного полюса источника тока к положительному к величине этого заряда:

ЭДС равна напряжению между полюсами разомкнутого источника тока.

Закон Ома для однородного проводника (участка цепи): сила тока в однородном проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника

Сопротивление проводника прямо пропорционально его удельному сопротивлению и длине и обратно пропорционально площади его поперечного сечения

Единица сопротивления — ом (1 Ом) 1 Ом = 1 В/А

Резистор — проводник с определенным постоянным сопротивлением

Удельное сопротивление — скалярная физическая величина, численно равная сопротивлению однородного цилиндрического проводника единичной длины и единичной площади.

Единица удельного сопротивления — ом-метр (1 Ом • м).

Удельное сопротивление металлического проводника линейно возрастает с температурой:

где ρ0— удельное сопротивление при T0 = 293 К, ΔТ= Т- T0, α — температурный коэффициент сопротивления. Единица температурного коэффициента сопротивления К-1. Удельное сопротивление полупроводника уменьшается при увеличении температуры из-за увеличения числа свободных зарядов, способных переносить электрический ток.

Дырка — вакантное электронное состояние в кристаллической решетке, имеющее избыточный положительный заряд.

Сверхпроводимость — физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества.

Критическая температура — температура скачкообразного перехода вещества из нормального состояния в сверхпроводящее.

Изотопический эффект — зависимость критической температуры от массы ионов в кристаллической решетке.

Электрический ток в сверхпроводнике обусловлен согласованным движением пар электронов, связанных между собой взаимодействием с кристаллической решеткой

При последовательном соединении резисторов общее сопротивление цепи равно сумме их сопротивлений При параллельном соединении резисторов проводимость цепи равна сумме их проводимостей Закон Ома для замкнутой цепи: сила тока в замкнутой цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи:

где R и r — внешнее и внутреннее сопротивления цепи.

Закон Ома для замкнутой цепи с несколькими последовательно соединенными источниками тока:

сила тока в замкнутой цепи с последовательно соединенными источниками тока прямо пропорциональна алгебраической сумме их ЭДС и обратно пропорциональна полному сопротивлению цепи:

Амперметр измеряет силу электрического тока, включается в цепь последовательно

Шунт — проводник, присоединяемый параллельно амперметру для увеличения предела его измерений*

где RA — сопротивление амперметра, n — кратность изменения предела измерений.

Вольтметр измеряет электрическое напряжение. Включается в цепь параллельно

Дополнительное сопротивление — проводник, присоединяемый последовательно с вольтметром для увеличения предела его измерений.

где Rv — сопротивление вольтметра Количество теплоты, выделяющееся в проводнике, равно работе электрического тока.

Закон Джоуля—Ленца: количество теплоты, выделяемое в проводнике с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения по нему тока:

Мощность электрического тока — работа, совершаемая в единицу времени электрическим полем при упорядоченном движении заряженных частиц в проводнике

Потребителю передается максимальная мощность, если сопротивление нагрузки равно суммарному сопротивлению источника тока и подводящих проводов

Жидкости, как и твердые тела, могут быть проводниками электрического тока

Электролиты — вещества, растворы и расплавы которых обладают ионной проводимостью.

Электролитическая диссоциация — расщепление молекул электролита на положительные и отрицательные ионы под действием растворителя

Электролиз — выделение на электродах веществ, входящих в состав электролита, при протекании через его раствор (или расплав) электрического тока

Закон Фарадея: масса вещества, выделившегося на электроде, прямо пропорциональна заряду, прошедшему через раствор (расплав) электролита. где k— электрохимический эквивалент вещества.

Единица электрохимического эквивалента — килограмм на кулон (1 кг/Кл).

Объединенный закон Фарадея:

Обратите внимание

где М — молярная масса, n — валентность химического элемента; постоянная Фарадея F = 9,65- 104Кл/моль.

Источник: https://5terka.com/postoyannyi-elektricheskii-tok-osnovnye-polozheniya

Постоянный электрический ток

 РЅР° главную   

Официальный сайт РђРќРћ ДО Центра “Логос”, Рі.Глазов

http://logos-glz.ucoz.net/

ГОТОВ�МСЯ К УРОКУ

Кинематика

Динамика

РњРљРў

Термодинамика 

Электростатика

Электрический ток

Электрический ток в средах

Магнитное поле Электромагнитная индукция

Оптика

Методы познания

постоянный электрический ток                                                      немного Рѕ физике:

Что называют электрическим током?

Электрический ток –
упорядоченное движение заряженных частиц под действием сил электрического поля или сторонних сил.

За направление тока выбрано направление движения положительно заряженных частиц.

Электрический ток называют постоянным, если сила тока и его направление не меняются с течением времени.

Условия существования постоянного электрического тока.

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Р�сточник тока – устройство, РІ котором осуществляется преобразование какого-либо РІРёРґР° энергии РІ энергию электрического поля.

В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны.

Например РІ аккумуляторах Рё гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, РІ генераторах электростанций РѕРЅРё возникают  РїСЂРё движении РїСЂРѕРІРѕРґРЅРёРєР° РІ магнитном поле, РІ фотоэлементах – РїСЂРё действия света РЅР° электроны РІ металлах Рё полупроводниках.

Электродвижущей силой источника тока
называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.

Основные понятия.

Сила тока – скалярная физическая величина, равная отношению заряда, прошедшего через РїСЂРѕРІРѕРґРЅРёРє, РєРѕ времени, Р·Р° которое этот заряд прошел.

РіРґРµ I – сила тока, q – величина заряда (количество электричества), t– время прохождения заряда.

Плотность тока – векторная физическая величина, равная отношению силы тока Рє площади поперечного сечения РїСЂРѕРІРѕРґРЅРёРєР°.

где j плотность токаS площадь сечения проводника.

Направление вектора плотности тока совпадает с направлением движения положительно заряженных частиц.

Напряжение скалярная физическая величина, равная отношению полной работе кулоновских и сторонних сил при перемещении положительного заряда на участке к значению этого заряда.

РіРґРµ A – полная работа сторонних Рё кулоновских СЃРёР»,  q – электрический заряд.

Электрическое сопротивление – физическая величина, характеризующая  электрические свойства участка цепи.

РіРґРµ ρ – удельное сопротивление РїСЂРѕРІРѕРґРЅРёРєР°, l – длина участка РїСЂРѕРІРѕРґРЅРёРєР°, S – площадь поперечного сечения РїСЂРѕРІРѕРґРЅРёРєР°.

Проводимостью называется величина, обратная сопротивлению

РіРґРµ  G – проводимость.

Законы Ома.

Закон Ома для однородного участка цепи.

Сила тока РІ РѕРґРЅРѕСЂРѕРґРЅРѕРј участке цепи РїСЂСЏРјРѕ пропорциональна напряжению РїСЂРё постоянном сопротивлении участка  Рё обратно пропорциональна сопротивлению участка РїСЂРё постоянном напряжении.

РіРґРµ U – напряжение РЅР° участке,  R – сопротивление участка.

Закон Ома для произвольного участка цепи, содержащего источник постоянного тока.

РіРґРµ   φ1 – φ2 + ε = U напряжение РЅР° заданном участке цепи, R – электрическое сопротивление  заданного участка цепи.

Закон Ома для полной цепи.

Сила тока в полной цепи равна отношению электродвижущей силы источника к сумме сопротивлений внешнего и внутреннего участка цепи.

РіРґРµ R – электрическое сопротивление внешнего участка цепи,  r – электрическое сопротивление внутреннего участка цепи.

Короткое замыкание.

Р�Р· закона РћРјР° для полной цепи следует, что сила тока РІ цепи  СЃ заданным источником тока зависит только РѕС‚ сопротивления внешней цепи R.

Если Рє полюсам источника тока подсоединить РїСЂРѕРІРѕРґРЅРёРє СЃ сопротивлением  R

Источник: http://nika-fizika.narod.ru/65_0.htm

Ссылка на основную публикацию
Adblock
detector